scholarly journals A Fault Diagnosis Design Based on Deep Learning Approach for Electric Vehicle Applications

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6599
Author(s):  
Halid Kaplan ◽  
Kambiz Tehrani ◽  
Mo Jamshidi

Diagnosing faults in electric vehicles (EVs) is a great challenge. The purpose of this paper is to demonstrate the detection of faults in an electromechanical conversion chain for conventional or autonomous EVs. The information and data coming from different sensors make it possible for EVs to recover a series of information including currents, voltages, speeds, and so on. This information is processed to detect any faults in the electromechanical conversion chain. The novelty of this study is to develop an architecture for a fault diagnosis model by means of the feature extraction technique. In this regard, the long short-term memory (LSTM) approach for the fault diagnosis is proposed. This approach has been tested for an EV prototype in practice, is superior in accuracy over other fault diagnosis techniques, and is based on machine learning. An EV in an urban context is modeled, and then the fault diagnosis approach is applied based on deep learning architectures. The EV and the fault diagnosis model is simulated in Matlab software. It is also revealed how deep learning contributes to the fault diagnosis of EVs. The simulation and practical results confirm that higher accuracy in the fault diagnosis is obtained by applying the LSTM.

Author(s):  
B. Premjith ◽  
K. P. Soman

Morphological synthesis is one of the main components of Machine Translation (MT) frameworks, especially when any one or both of the source and target languages are morphologically rich. Morphological synthesis is the process of combining two words or two morphemes according to the Sandhi rules of the morphologically rich language. Malayalam and Tamil are two languages in India which are morphologically abundant as well as agglutinative. Morphological synthesis of a word in these two languages is challenging basically because of the following reasons: (1) Abundance in morphology; (2) Complex Sandhi rules; (3) The possibilty in Malayalam to form words by combining words that belong to different syntactic categories (for example, noun and verb); and (4) The construction of a sentence by combining multiple words. We formulated the task of the morphological generation of nouns and verbs of Malayalam and Tamil as a character-to-character sequence tagging problem. In this article, we used deep learning architectures like Recurrent Neural Network (RNN) , Long Short-Term Memory Networks (LSTM) , Gated Recurrent Unit (GRU) , and their stacked and bidirectional versions for the implementation of morphological synthesis at the character level. In addition to that, we investigated the performance of the combination of the aforementioned deep learning architectures and the Conditional Random Field (CRF) in the morphological synthesis of nouns and verbs in Malayalam and Tamil. We observed that the addition of CRF to the Bidirectional LSTM/GRU architecture achieved more than 99% accuracy in the morphological synthesis of Malayalam and Tamil nouns and verbs.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6614
Author(s):  
Yangde Gao ◽  
Cheol Hong Kim ◽  
Jong-Myon Kim

Deep learning (DL) plays a very important role in the fault diagnosis of rotating machinery. To enhance the self-learning capacity and improve the intelligent diagnosis accuracy of DL for rotating machinery, a novel hybrid deep learning method (NHDLM) based on Extended Deep Convolutional Neural Networks with Wide First-layer Kernels (EWDCNN) and long short-term memory (LSTM) is proposed for complex environments. First, the EWDCNN method is presented by extending the convolution layer of WDCNN, which can further improve automatic feature extraction. The LSTM then changes the geometric architecture of the EWDCNN to produce a novel hybrid method (NHDLM), which further improves the performance for feature classification. Compared with CNN, WDCNN, and EWDCNN, the proposed NHDLM method has the greatest performance and identification accuracy for the fault diagnosis of rotating machinery.


2020 ◽  
Vol 30 (1) ◽  
pp. 258-272
Author(s):  
P B Mallikarjuna ◽  
M Sreenatha ◽  
S Manjunath ◽  
Niranjan C Kundur

Abstract Gearbox is one of the vital components in aircraft engines. If any small damage to gearbox, it can cause the breakdown of aircraft engine. Thus it is significant to study fault diagnosis in gearbox system. In this paper, two deep learning models (Long short term memory (LSTM) and Bi-directional long short term memory (BLSTM)) are proposed to classify the condition of gearbox into good or bad. These models are applied on aircraft gearbox vibration data in both time and frequency domain. A publicly available aircraft gearbox vibration dataset is used to evaluate the performance of proposed models. The results proved that accuracy achieved by LSTM and BLSTM are highly reliable and applicable in health monitoring of aircraft gearbox system in time domain as compared to frequency domain. Also, to show the superiority of proposed models for aircraft gearbox fault diagnosis, performance is compared with classical machine learning models.


In this article, we have trained neural network based on deep learning architectures to classify images on standard Fashion-MNIST and CIFAR-10 dataset. The various CNN- based classification architecture and RNN-based classification architecture are trained as well as tested on those standard datasets. In CNN architecture, we include CNN with 1, 2 and 3 Convolutional Layer and in RNN architecture, we include Long- Short Term Memory (LSTM) with one and two LSTM layer. Our models show remarkable outcome on the standard benchmark dataset. The tested models like CNN1 show greater accuracy on the MNIST fashion dataset and CNN3, LSTM1 and LSTM2 performed better than other models on the CIFAR-10 dataset.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Moslem Imani ◽  
Hoda Fakour ◽  
Wen-Hau Lan ◽  
Huan-Chin Kao ◽  
Chi Ming Lee ◽  
...  

Despite the great significance of precisely forecasting the wind speed for development of the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes the prediction a complex and challenging task. For improving the security and economic performance of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used to find the best subset from the data by maximizing the joint MI between subset and target output. To enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an international airport station in the southern coast of Iran Bandar-Abbas City was used as the original input dataset for the optimized deep learning model. Based on the statistical results, the rough set LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well as traditional neural networks, with the lowest error for training and testing datasets in different time horizons. The suggested model can support the optimization of the control approach and the smooth procedure of power system. The results confirm the superior capabilities of deep learning techniques for wind speed forecasting, which could also inspire new applications in meteorology assessment.


Author(s):  
Claire Brenner ◽  
Jonathan Frame ◽  
Grey Nearing ◽  
Karsten Schulz

ZusammenfassungDie Verdunstung ist ein entscheidender Prozess im globalen Wasser‑, Energie- sowie Kohlenstoffkreislauf. Daten zur räumlich-zeitlichen Dynamik der Verdunstung sind daher von großer Bedeutung für Klimamodellierungen, zur Abschätzung der Auswirkungen der Klimakrise sowie nicht zuletzt für die Landwirtschaft.In dieser Arbeit wenden wir zwei Machine- und Deep Learning-Methoden für die Vorhersage der Verdunstung mit täglicher und halbstündlicher Auflösung für Standorte des FLUXNET-Datensatzes an. Das Long Short-Term Memory Netzwerk ist ein rekurrentes neuronales Netzwerk, welchen explizit Speichereffekte berücksichtigt und Zeitreihen der Eingangsgrößen analysiert (entsprechend physikalisch-basierten Wasserbilanzmodellen). Dem gegenüber gestellt werden Modellierungen mit XGBoost, einer Entscheidungsbaum-Methode, die in diesem Fall nur Informationen für den zu bestimmenden Zeitschritt erhält (entsprechend physikalisch-basierten Energiebilanzmodellen). Durch diesen Vergleich der beiden Modellansätze soll untersucht werden, inwieweit sich durch die Berücksichtigung von Speichereffekten Vorteile für die Modellierung ergeben.Die Analysen zeigen, dass beide Modellansätze gute Ergebnisse erzielen und im Vergleich zu einem ausgewerteten Referenzdatensatz eine höhere Modellgüte aufweisen. Vergleicht man beide Modelle, weist das LSTM im Mittel über alle 153 untersuchten Standorte eine bessere Übereinstimmung mit den Beobachtungen auf. Allerdings zeigt sich eine Abhängigkeit der Güte der Verdunstungsvorhersage von der Vegetationsklasse des Standorts; vor allem wärmere, trockene Standorte mit kurzer Vegetation werden durch das LSTM besser repräsentiert, wohingegen beispielsweise in Feuchtgebieten XGBoost eine bessere Übereinstimmung mit den Beobachtung liefert. Die Relevanz von Speichereffekten scheint daher zwischen Ökosystemen und Standorten zu variieren.Die präsentierten Ergebnisse unterstreichen das Potenzial von Methoden der künstlichen Intelligenz für die Beschreibung der Verdunstung.


Sign in / Sign up

Export Citation Format

Share Document