scholarly journals How BIM Contributes to a Building’s Energy Efficiency throughout Its Whole Life Cycle: Systematic Mapping

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6680
Author(s):  
Tatjana Vilutienė ◽  
Rasa Džiugaitė-Tumėnienė ◽  
Diana Kalibatienė ◽  
Darius Kalibatas

This paper presents a systematic mapping (SM) study with the aim to determine how Building Information Modeling (BIM) methodologies and technologies contribute to energy-related analyses over the course of the entire building life cycle. The method adopted in the study is based on a set of seven research questions. We used a mixed technique combining co-citation analysis and bibliographic coupling in order to analyze the publications’ datasets for the period 2010–2020. The main advantage and novelty of this study are that the joint dataset from the Scopus and Web of Science databases was used to develop the keyword map. The main findings of this study indicate that many BIM-based applications can be used to analyze the building energy performance at all stages of the building life cycle. However, the applications of BIM in conjunction with other information technologies are limited and are still in the initial stage. In the future, the main improvements should be focused on process, model, system, tool, use and information modeling. The most promising long-term solution is an open BIM framework based on open standards, which allows the integration of BIM and energy simulation tools and satisfies specific data exchange requirements.

Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


Author(s):  
Elena Gorda

The generalization of the concept of the task in terms of information environments of construction [ISB] is performed. The approach to the presentation of such concepts as construction issues, construction problem, ontology, idea, concept, classification of problems, tasks, directions, objects included in the staging part of the tasks taking into account the specifics of the tasks solved within the developed information technologies in construction issues. The paper defines and investigates on the basis of methods of construction geodesy the actual tasks of construction, design, modeling, monitoring and their totality in the field of construction by means of information theory. An approach to the description of the technical condition of a construction object on the basis of information modeling in the management of the construction process and information modeling within the life cycle is proposed and described. Information modeling is a process, the results of each stage of which, ie information models of the building, differ greatly from each other depending on the stage of the life cycle of the object and the requirements for modeling in solving emerging problems. The construction object strongly depends on the stage of its existence: if during the design it is virtual, and during construction it gradually finds a real embodiment, then at a long stage of operation the building enters a period of stability and is no longer subject to significant changes. An information model is a variable object that depends on the range of tasks to be solved. Using the methods of construction geodesy in the field of construction, the field of problems, class of problems, the concept of the problem, the state of the problem, subtasks, chains of problems, problem solving and the result of solving the problem, the relationship between problems setting the transformation of aggregation, merger, integration. The urgency of the task from a theoretical point of view is determined by the expansion of the ontology of construction as a science, from an applied point of view is determined by the possibility of accurate formalization of regulatory information and documentation in construction.


2018 ◽  
Vol 9 (2) ◽  
pp. 115-121 ◽  
Author(s):  
B. Kiss ◽  
ZS. Szalay

Building life cycle assessment is getting more and more attention within the topic of environmental impact caused by the built environment. Although more and more research focus on the embodied impact of buildings, the investigation of the operational energy use still needs attention. The majority of the building stock still does not comply with the nearly zero energy requirements. Also, in case of retrofitting, when most of the embodied impact is already spent on the existing structures (and so immutable), the importance of the operational energy rises. There are several methods to calculate the energy performance of buildings covering the range from simplified seasonal methods to detailed hourly energy simulations. Not only the accuracy of the calculations, but the computational time can be significantly different within the methods. The latter is especially important in case of optimization, when there is limited time to perform one calculation. Our research shows that the use of different calculation techniques can lead to different optima for environmental impacts in case of retrofitting. In this paper we compare these calculation methods with focus on computational time, accuracy and applicability to environmental optimization of buildings. We present the results in a case study of the retrofitting of a middle-sized apartment house in Hungary.


2019 ◽  
Vol 111 ◽  
pp. 03061 ◽  
Author(s):  
Michaela Lambertz ◽  
Sebastian Theißen ◽  
Jannick Höper ◽  
Reinhard Wimmer

The new Energy Performance of Buildings Directive (EPBD) 2018 and the GebäudeEnergieGesetz (GEG) tightened the requirements for energy efficiency and the use of renewable energy sources in buildings at EU and national levels. Environmental impacts from manufacturing, dismantling and recycling of buildings are not taken into account. Green Building Certification Systems, such as the DGNB or BNB systems, are therefore the only ones that (voluntarily) set holistic, ecological requirements for buildings. Based on a Whole-Building Life Cycle Assessment, the entire building life cycle and its environmental effects are evaluated. While building services in this context are usually only included in such a simplified approach, the full scope of the produced environmental impacts are underestimated and misjudged for the reduction of emissions and other environmental impacts. This publication uses the results of a life cycle assessment of a typical office building (in Germany) to show the amount of influence building services have on environmental impacts of buildings. Furthermore the study shows an approach how the very high pro-curement and calculation effort of LCA can be reduced by linking the Building Information Modelling (BIM) Method and LCA models to enable a significantly more efficient and easier calculation process, es-pecially for building services.


2020 ◽  
Vol 12 (16) ◽  
pp. 6372
Author(s):  
Christine Eon ◽  
Jessica K. Breadsell ◽  
Joshua Byrne ◽  
Gregory M. Morrison

Energy efficient buildings are viewed as one of the solutions to reduce carbon emissions from the built environment. However, studies worldwide indicate that there is a significant gap between building energy targets (as-designed) and the actual measured building energy consumption (as-built). Several underlying causes for the energy performance gap have been identified at all stages of the building life cycle. Focus is generally on the post-occupancy stage of the building life cycle. However, issues relating to the construction and commissioning stages of the building are a major concern, though not usually researched. There is uncertainty on how to address the as-designed versus as-built gap. The objective of this review article is to identify causes for the energy performance gap in buildings in relation to the post-design and pre-occupancy stages and review proposed solutions. The methodology applied in this research is the rapid review, which is a variant of the systematic literature review method. Findings suggest that causes for discrepancies between as-designed and as-built energy performance during the construction and commissioning stages relate to a lack of knowledge and skills, lack of communication between stakeholders and a lack of accountability for building performance post-occupancy. Recommendations to close this gap during this period include better training, improved communication standards, collaboration, energy evaluations based on post-occupancy performance, transparency of building performance, improved testing and verification and reviewed building standards.


2014 ◽  
Vol 496-500 ◽  
pp. 2523-2528
Author(s):  
Ying Ming Su ◽  
Chung Yi Lan

With inappropriate design or construction, the functions and service life of buildings begin to decline from the day of official use until they are demolished and resulting in extremely high cumulative cost throughout the building life cycle (BLC). However, the development of building information modeling (BIM) provides a solution for short BLCs and massive cumulative cost caused by errors occurring during the building design and construction phases. BIM is an innovative technique applicable to building design and construction management that has been vigorously developed in the construction industry. The development of BIM technology is now a global trend that can not be ignored, similar to 2D CAD before. BIM can be further developed into several aspects and applied during the construction phase, most important of all, enhance the overall building functionality and save operating cost throughout the BLC.


2021 ◽  
Vol 263 ◽  
pp. 05029
Author(s):  
Maxim Zheleznov ◽  
Liubov Adamtsevich ◽  
Pavel Vorobev ◽  
Zoya Filimonova

In this paper, the authors consider the current state and level of implementation of building information modeling applied to transport infrastructure at the stages of their life cycle in Russia and abroad. Possible prerequisites for the transfer of knowledge and technologies of building information modeling from the civil and industrial facilities to the field of transport construction are highlighted according to the accumulated experience in the design, construction and operation of such facilities in various countries and Russia. Special emphasis is placed on examples of the world’s largest implemented or ongoing projects for the construction of transport infrastructure. The experience of implementing these projects was analyzed from the point of view of the software used in relation to all stages of the life cycle of transport infrastructure objects: design, construction and subsequent operation. The prospects for the development of data exchange formats in the context of the existing problem of mutual integration of BIM and GIS for transport infrastructure objects to ensure their complementarity and compatibility are also considered. The functional levels of the use of various software within the framework of companies implementing project activities using information modeling technologies are highlighted. A list of criteria characterizing the level of information modeling technologies integration to transport infrastructure objects into the activities of participants in the life cycle of these objects is highlighted. A review of the regulatory framework of information modeling in construction in Russia is carried out, and the main differences in this area with the regulatory regulation of this area in the European Union are noted. Conclusions are made about the key reference points for the development of information modeling of transport infrastructure facilities on a national scale, leading customer companies and contractors.


2021 ◽  
Vol 11 (16) ◽  
pp. 7581
Author(s):  
Richárd Beregi ◽  
Gianfranco Pedone ◽  
Borbála Háy ◽  
József Váncza

Digital transformation and artificial intelligence are creating an opportunity for innovation across all levels of industry and are transforming the world of work by enabling factories to embrace cutting edge Information Technologies (ITs) into their manufacturing processes. Manufacturing Execution Systems (MESs) are abandoning their traditional role of legacy executing middle-ware for embracing the much wider vision of functional interoperability enablers among autonomous, distributed, and collaborative Cyber-Physical Production System (CPPS). In this paper, we propose a basic methodology for universally modeling, digitalizing, and integrating services offered by a variety of isolated workcells into a single, standardized, and augmented production system. The result is a reliable, reconfigurable, and interoperable manufacturing architecture, which privileges Open Platform Communications Unified Architecture (OPC UA) and its rich possibilities for information modeling at a higher level of the common service interoperability, along with Message Queuing Telemetry Transport (MQTT) lightweight protocols at lower levels of data exchange. The proposed MES architecture has been demonstrated and validated in several use-cases at a research manufacturing laboratory of excellence for industrial testbeds.


Author(s):  
Z. M. Ma

Computer-based information technologies have been extensively used to help industries manage their processes and information systems become their nervous center. More specifically, databases are designed to support the data storage, processing, and retrieval activities related to data management in information systems. Database management systems provide efficient task support and tremendous gain in productivity is thereby accomplished using these technologies. Database systems are the key to implementing industrial data management. Industrial data management requires database technique support. Industrial applications, however, are typically data- and knowledge-intensive applications and have some unique characteristics (e.g., large volumes of data with complex structures) that makes their management difficult. Product data management supporting various life-cycle aspects in the manufacturing industry, for example, should not only to describe complex product structure but also manage the data of various life-cycle aspects from design, development, manufacturing, and product support. Besides, some new techniques, such as Web-based design and artificial intelligence, have been introduced into industrial applications. The unique characteristics and usage of these new technologies have created many potential requirements for industrial data management, which challenge today’s database systems and promote their evolvement.


Sign in / Sign up

Export Citation Format

Share Document