scholarly journals The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6887
Author(s):  
Małgorzata Szczepanik ◽  
Joanna Szyszlak-Bargłowicz ◽  
Grzegorz Zając ◽  
Adam Koniuszy ◽  
Małgorzata Hawrot-Paw ◽  
...  

The content of heavy metals Cd, Cr, Cu, Fe, Ni, Pb and Zn in ash samples from miscanthus, oak, pine, sunflower husk, wheat straw, and willow ashes burned at 500, 600, 700, 800, 900, and 1000 °C, respectively, was determined. The statistical analysis of the results was based on multivariate methods: hierarchical cluster analysis (HCA), and principal component analysis (PCA), which made it possible to classify the raw materials ashed at different temperatures into the most similar groups, and to study the structure of data variability. Using PCA, three principal components were extracted, which explain more than 88% of the variability of the studied elements. Therefore, it can be concluded that the application of multivariate statistical techniques to the analysis of the results of the study of heavy metal content allowed us to draw conclusions about the influence of biomass properties on its chemical characteristics during combustion.

2012 ◽  
Vol 32 (6) ◽  
pp. 1197-1204 ◽  
Author(s):  
Hevandro C. Delalibera ◽  
Pedro H. Weirich Neto ◽  
Noemi Nagata

The study of spatial variability of soil and plants attributes, or precision agriculture, a technique that aims the rational use of natural resources, is expanding commercially in Brazil. Nevertheless, there is a lack of mathematical analysis that supports the correlation of these independent variables and their interactions with the productivity, identifying scientific standards technologically applicable. The aim of this study was to identify patterns of soil variability according to the eleven physical and seven chemical indicators in an agricultural area. It was used two multivariate techniques: the hierarchical cluster analysis (HCA) and the principal component analysis (PCA). According to the HCA, the area was divided into five management zones: zone 1 with 2.87ha, zone 2 with 0.8ha, zone 3 with 1.84ha, zone 4 with 1.33ha and zone 5 with 2.76ha. By the PCA, it was identified the most important variables within each zone: V% for the zone 1, CTC in the zone 2, levels of H+Al in the zone 4 and sand content and altitude in the zone 5. The zone 3 was classified as an intermediate zone with characteristics of all others. According to the results it is concluded that it is possible to separate into groups (management zones) samples with the same patterns of variability by the multivariate statistical techniques.


2018 ◽  
Vol 13 (4) ◽  
pp. 893-908
Author(s):  
Siddhant Dash ◽  
Smitom Swapna Borah ◽  
Ajay Kalamdhad

AbstractThe aim of this study was application of multivariate statistical techniques – e.g., hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA) – to analyse significant sources affecting water quality in Deepor Beel. Laboratory analyses for 20 water quality parameters were carried out on samples collected from 23 monitoring stations. HCA was used on the raw data, categorising the 23 sampling locations into three clusters, i.e., sites of relatively high (HP), moderate (MP) and low pollution (LP), based on water quality similarities at the sampling locations. The HCA results were then used to carry out PCA, yielding different principal components (PCs) and providing information about the respective sites' pollution factors/sources. The PCA for HP sites resulted in the identification of six PCs accounting for more than 84% of the total cumulative variance. Similarly, the PCA for LP and MP sites resulted in two and five PCs, respectively, each accounting for 100% of total cumulative variance. Finally, the raw dataset was subjected to DA. Four parameters, i.e., BOD5, COD, TSS and SO42− were shown to account for large spatial variations in the wetland's water quality and exert the most influence.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


2018 ◽  
Vol 20 (1) ◽  
pp. 161-168 ◽  

Sediments play an important role in the quality of aquatic ecosystems in the Dam Lake where they can either be a sink or a source of contaminants, depending on the management. This purpose of this study is to identify the sediment quality in order to find out the causes for the malodor and the eutrophication that is causing a bad scenario. Solutions for improving the dam are proposed. Multivariate statistical techniques, such as a principal component analysis (PCA) and cluster analysis (CA), were applied to the data regarding sediment quality in relation to anthropogenic impact in Suat Ugurlu Dam Lake. This data was generated during 2014-2015, with monitoring at four sites for 11 parameters. A PCA and CA were used in the study of the samples. The total variance of 84.1%, 74.3%, 87.4% and 91.5% suggest 4, 3, 3 and 4 principle components (PCs) in the four locations: LC1, LC2, LC3 and LC4, respectively. Also, a CA was applied to both the variables and the observations. Some variables and observations showed a high similarity based on the results of variables in the CA. Also, the similarity ratio of temperature-mercury (Hg) and oxidation reduction potential (ORP) was high and generally, the cluster number of variables was 5, according to the selected similarity level.


2020 ◽  
Vol 69 (4) ◽  
pp. 398-414 ◽  
Author(s):  
Vasant Wagh ◽  
Shrikant Mukate ◽  
Aniket Muley ◽  
Ajaykumar Kadam ◽  
Dipak Panaskar ◽  
...  

Abstract The integration of pollution index of groundwater (PIG), multivariate statistical techniques including correlation matrix (CM), principal component analysis (PCA), cluster analysis (CA) and various ionic plots was applied to elucidate the influence of natural and anthropogenic inputs on groundwater chemistry and quality of the Kadava river basin. A total of 80 groundwater samples were collected and analysed for major ions during pre- and post-monsoon seasons of 2012. Analytical results inferred that Ca, Mg, Cl, SO4 and NO3 surpass the desirable limit (DL) and permissible limit (PL) of Bureau of Indian Standards (BIS) and the World Health Organization (WHO) in both the seasons. The elevated content of total dissolved solids (TDS), Cl, SO4, Mg, Na and NO3 is influenced by precipitation and agricultural dominance. PIG results inferred that 52.5 and 35%, 30 and 37.5%, 12.5 and 20%, 2.5 and 5% groundwater samples fall in insignificant, low, moderate and high pollution category (PC) in pre- and post-monsoon seasons, respectively. PC 1 confirms salinity controlled process due to high inputs of TDS, Ca, Mg, Na, Cl and SO4. Also, PC 2 suggests alkalinity influence by pH, CO3, HCO3 and F content. PIG and statistical techniques help to interpret the water quality data in an easier way.


Author(s):  
Mehmet Taşan ◽  
Yusuf Demir ◽  
Sevda Taşan

Abstract This study assessed groundwater quality in Alaçam, where irrigations are performed solely with groundwaters and samples were taken from 35 groundwater wells at pre and post irrigation seasons in 2014. Samples were analyzed for 18 water quality parameters. SAR, RSC and %Na values were calculated to examine the suitability of groundwater for irrigation. Hierarchical cluster analysis and principal component analysis were used to assess the groundwater quality parameters. The average EC value of groundwater in the pre-irrigation period was 1.21 dS/m and 1.30 dS/m after irrigation in the study area. It was determined that there were problems in two wells pre-irrigation and one well post-irrigation in terms of RSC, while there was no problem in the wells in terms of SAR. Piper diagram and cluster analysis showed that most groundwaters had CaHCO3 type water characteristics and only 3% was NaCl- as the predominant type. Seawater intrusion was identified as the primary factor influencing groundwater quality. Multivariate statistical analyses to evaluate polluting sources revealed that groundwater quality is affected by seawater intrusion, ion exchange, mineral dissolution and anthropogenic factors. The use of multivariate statistical methods and geographic information systems to manage water resources will be beneficial for both planners and decision-makers.


2021 ◽  
pp. 56-77
Author(s):  
Thyego Silva ◽  
Mariucha Lima ◽  
Teresa Leitão ◽  
Tiago Martins ◽  
Mateus Albuquerque

A hydrochemical study was conducted on the Quaternary Aquifer, in Recife, Brazil. Groundwater samples were collected in March–April 2015, at the beginning of the rainy season. Conventional graphics, ionic ratios, saturation indices, GIS mapping, and geostatistical and multivariate statistical analyses were used to water quality assessment and to characterize the main hydrochemical processes controlling groundwater’s chemistry. Q-mode hierarchical cluster analysis separated the samples into three clusters and five sub-clusters according to their hydrochemical similarities and facies. Principal Component Analysis (PCA) was employed to the studied groundwater samples where a three-factor model explains 80% of the total variation within the dataset. The PCA results revealed the influence of seawater intrusion, water-rock interaction, and nitrate contamination. The physico-chemical parameters of ~30% groundwaters exceed the World Health Organization (WHO) guidelines for drinking water quality. Nitrate was found at a concentration >10 mg NO3−/L in ~21% of the wells and exceeded WHO reference values in one. The integrated approach indicates the occurrence of the main major hydrogeochemical processes occurring in the shallow marine to alluvial aquifer as follow: 1) progressive freshening of remaining paleo-seawater accompanying cation exchange on fine sediments, 2) water-rock interaction (i.e., dissolution of silicates), and 3) point and diffuse wastewater contamination, and sulfate dissolution. This study successfully highlights the use of classical geochemical methods, GIS techniques, and multivariate statistical analyses (hierarchical cluster and principal component analyses) as complementary tools to understand hydrogeochemical processes and their influence on groundwater quality status to management actions, which could be used in similar alluvial coastal aquifers.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jonathan Andrade ◽  
Cristina Guimarães Pereira ◽  
Thamiris Ranquine ◽  
Cosme Antonio Azarias ◽  
Maria José Valenzuela Bell ◽  
...  

The ripening changes over time of special cheeses (Pecorino, ewes’ ripe, and Gouda) made with ewes’ milk were evaluated using FTIR/ATR spectroscopy during approximately one year. The midinfrared FTIR/ATR analyses were carried out in different ripening times between the cheese varieties and processed by means of multivariate statistical approaches. Overall, during the maturation, we observed a downward trend of the absorbance intensity of the amide group peaks (1700 to 1500 cm−1), which is linked to the breakdown of peptide bonds. Similar behavior was obtained for the lipidic region (3000 to 2800 cm−1 and 1765 to 1730 cm−1). Hierarchical cluster analysis and principal component analysis allowed the evaluation of the physicochemical changes of the cheeses. The proteolysis occurs in a fast pace during the first trimester of the ripening process, and the lipids are converted to smaller species as the times goes by. Our results indicate that infrared spectroscopy can be a useful tool in determining optimal temporal parameters in stages involving the development, production, and even a possible estimation of shelf life of cheeses.


2013 ◽  
Vol 67 (4) ◽  
pp. 817-823 ◽  
Author(s):  
Li Jing ◽  
Li Fadong ◽  
Liu Qiang ◽  
Song Shuai ◽  
Zhao Guangshuai

For this study, 34 water samples were collected along the Wei River and its tributaries. Multivariate statistical analyses were employed to interpret the environmental data and to identify the natural and anthropogenic trace metal inputs to the surface waters of the river. Our results revealed that Zn, Se, B, Ba, Fe, Mn, Mo, Ni and V were all detected in the Wei River. Compared to drinking water guidelines, the primary trace metal pollution components (B, Ni, Zn and Mn) exceeded drinking water standard levels by 47.1, 50.0, 44.1 and 26.5%, respectively. Inter-element relationships and landscape features of trace metals conducted by hierarchical cluster analysis (HCA) identified a uniform source of trace metals for all sampling sites, excluding one site that exhibited anomalous concentrations. Based on the patterns of relative loadings of individual metals calculated by principal component analysis (PCA), the primary trace metal sources were associated with natural/geogenic contributions, agro-chemical processes and discharge from local industrial sources. These results demonstrated the impact of human activities on metal concentrations in the Wei River.


Sign in / Sign up

Export Citation Format

Share Document