scholarly journals Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7032
Author(s):  
Angelika Sita Ouedraogo ◽  
Robert Scott Frazier ◽  
Ajay Kumar

Disposal of municipal solid wastes (MSW) remains a challenge to minimize its impacts on the environment and human health. Landfilling, currently the most common method used for MSW disposal, occupies land space and leads to soil and air emissions. Gasification, an alternative MSW disposal method, can convert waste to energy, but can also lead to soil and air emissions and is a more extensive operation. In this study, life cycle assessments (LCA) of the two disposal methods (landfilling without energy recovery and gasification) were compared to understand impacts on environment and health. The LCA was conducted following the ISO 14040 standards with one ton of MSW as the functional unit. The life cycle inventory was obtained from published journals, technical reports, LandGEM, HELP and GREET database. The impact assessment was done using TRACI 2.1 and categorized into eight groups. The LCA revealed that landfilling is a higher contributor in global warming, acidification, smog formation, eutrophication, ecotoxicity and human health cancer and non-cancer categories. The negative environmental impacts of MSW landfilling can be primarily attributed to the fate of leachate loss and landfill gas, while those of the MSW gasification can be attributed to the disposal of its solid residues.

2020 ◽  
Vol 207 ◽  
pp. 02001
Author(s):  
Bogdan Gabriel Carp ◽  
Gabriel Mocanu ◽  
Ion V. Ion ◽  
Florin Popescu

The municipal solid wastes (MSW) can be turned into resources through recycling and energy recovery. To obtain the maximum amount of energy, the appropriate technology must be applied to waste treatment. The composition and characteristics of municipal solid wastes are determinant for technologies choice for MSW in a city/region. Municipal authorities from the Galati city proposed a recovery rate of recyclable materials of 60% from MSW and treatment of the post-recycling MSW as follow: biodegradable fraction by anaerobic digestion and the combustible fraction by incineration or gasification. In this study traditional and innovative waste to energy technologies have been analysed and the potential of electrical energy of waste has been estimated. Results show that plasma gasification system of raw MSW coupled with gas turbine engine has almost the same electrical energy production (32.92 GWh/year) as conventional gasification of combustible material from MSW (17.21GWh/year) coupled with anaerobic digestion of organic fraction of MSW (11.65 GWh/year). By recovering and using the landfill gas from the Tirighina landfill, 6.68 GWh of electricity can be produced annually.


Author(s):  
V. Russo ◽  
A. E. Strever ◽  
H. J. Ponstein

Abstract Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.


2021 ◽  
Vol 13 (3) ◽  
pp. 1462
Author(s):  
Faisal A. Osra ◽  
Huseyin Kurtulus Ozcan ◽  
Jaber S. Alzahrani ◽  
Mohammad S. Alsoufi

In many countries, open dumping is considered the simplest, cheapest, and most cost-effective way of managing solid wastes. Thus, in underdeveloped economies, Municipal Solid Wastes (MSW) are openly dumped. Improper waste disposal causes air, water, and soil pollution, impairing soil permeability and blockage of the drainage system. Solid Waste Management (SWM) can be enhanced by operating a well-engineered site with the capacity to reduce, reuse, and recover MSW. Makkah city is one of the holiest cities in the world. It harbors a dozen of holy places. Millions of people across the globe visit the place every year to perform Hajj, Umrah, and tourism. In the present study, MSW characterization and energy recovery from MSW of Makkah was determined. The average composition of solid waste in Makkah city is organic matter (48%), plastics (25%), paper and cardboard (20%), metals (4%), glass (2%), textiles (1%), and wood (1%). In order to evaluate energy recovery potential from solid waste in Kakia open dumpsite landfill, the Gas Generation Model (LandGEM) was used. According to LandGEM results, landfill gas (methane and carbon dioxide) generation potential and capacity were determined. Kakia open dump has a methane potential of 83.52 m3 per ton of waste.


Author(s):  
Nickolas J. Themelis

This report presents the results of a study that examined alternatives to landfilling the municipal solid wastes (MSW) of New York City. Detailed characterization of the wastes led to their classification, according to materials properties and inherent value, to “recyclable”, “compostable”, “combustible”, and “landfillable”. The results showed that the present rates of recycling (16.6%) and combustion (12.4%) in New York City can be increased by a) implementing an automated, modern Materials Recovery Facility (MRF) that separates the blue bag stream to “recyclables” and “combustibles”, and b) combusting the non-recyclable materials in a Waste-to-Energy (WTE) facility. Combustion of wastes to produce electricity is environmentally much preferable to landfilling. An advanced technology for combustion is that used in a modern Waste-to-Energy plant (SEMASS, Massachusetts) that processes 0.9 million metric tons of MSW per year, generates a net of 610 kWh per metric ton of MSW, recovers ferrous and non-ferrous metals, and has lower emissions than many coal-fired power plants.


Author(s):  
Giselle Balaguer-Da´tiz ◽  
Nikhil Krishnan

The management of municipal solid wastes (MSW) in Puerto Rico is becoming increasingly challenging. In recent years, several of the older landfills have closed due to lack of compliance with federal landfill requirements. Puerto Rico is an island community and there is limited space for construction of new landfills. Furthermore, Puerto Rico residents generate more waste per capita than people living on the continental US. Thermal treatment, or waste to energy (WTE) technologies are therefore a promising option for MSW management. It is critical to consider environmental impacts when making decisions related to MSW management. In this paper we quantify and compare the environmental implications of thermal treatment of MSW with modern landfilling for Puerto Rico from a life cycle perspective. The Caguas municipality is currently considering developing a thermal treatment plant. We compare this to an expansion of a landfill site in the Humacao municipality, which currently receives waste from Caguas. The scope of our analysis includes a broad suite of activities associated with management of MSW. We include: (i) the transportation of MSW; (ii) the impacts of managing waste (e.g., landfill gas emissions and potential aqueous run-off with landfills; air emissions of metals, dioxins and greenhouse gases) and (iii) the implications of energy and materials offsets from the waste management process (e.g., conversion of landfill gas to electricity, electricity produced in thermal treatment, and materials recovered from thermal treatment ash). We developed life cycle inventory models for different waste management processes, incorporating information from a wide range of sources — including peer reviewed life cycle inventory databases, the body of literature on environmental impact of waste management, and site-specific factors for Puerto Rico (e.g. waste composition, rainfall patterns, electricity mix). We managed uncertainty in data and models by constructing different scenarios for both technologies based on realistic ranges of emission factors. The results show that thermal treatment of the unrecyclable part of the waste stream is the preferred option for waste management when compared to modern landfilling. Furthermore, Eco-indicator 99 method is used to investigate the human health, ecosystem quality and resource use impact categories.


Author(s):  
Nabil Kechaou ◽  
E Ammar

The Municipal Solid Waste of Agareb (Sfax –Tunisia), characterized by high organic fraction and moisture contents is the most worrying pollution source that must be managed by innovative treatment and recycling technologies. Bio-drying, as a waste to energy conversion technology, aims at reducing moisture content of this organic matter. This concept,  similar to composting, is accomplished by using the heat generated from the microbial degradation of the waste matrix, while forced aeration is used. The purpose of this work was to reduce the moisture content of the waste, by maximizing drying and minimizing organic matter biodegradation, in order to produce a solid recovered fuel with high calorific value.Keywords: Municipal solid wastes; organic matter; biodrying; composting; energy recovery.


Author(s):  
Shang-Hsiu Lee ◽  
Nickolas J. Themelis ◽  
Marco J. Castaldi

In boilers that use municipal solid wastes as fuel, metal wastage due to corrosion and erosion and tube fouling due to the buildup of deposits present serious problems to the system designer and operator. This study examines the corrosion mechanisms in Waste-To-Energy (WTE) boilers and summarizes the findings of a corrosion survey of several WTE facilities and of interviews with senior engineers in the WTE industry. In addition, this study examines the existing methods of reducing corrosion that are adopted in WTE plants. Finally, the study proposes experimental research on corrosion resistant materials to be carried in the near future.


Sign in / Sign up

Export Citation Format

Share Document