scholarly journals Energy Self-Sufficient Livestock Farm as the Example of Agricultural Hybrid Off-Grid System

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7041
Author(s):  
Grzegorz Augustyn ◽  
Jerzy Mikulik ◽  
Rafał Rumin ◽  
Marta Szyba

Contemporary agriculture has become very energy-intensive and mainly uses electricity, which is needed for technological processes on livestock farms. Livestock faeces are burdensome for the environment due to the release of methane into the atmosphere. This article presents the concept of a self-sufficient livestock farm as an off-grid energy circuit that is a part of the agricultural process. The key idea is to obtain an energy flow using the concept of a smart valve to achieve a self-sufficient energy process based on a biogas plant, renewable energy sources, and energy storage. During the production process, a livestock farm produces large amounts of waste in the form of grey and black manure. On the one hand, these products are highly harmful to the environment, but on the other, they are valuable input products for another process, i.e., methane production. The methane becomes the fuel for cogeneration generators that produce heat and electricity. Heat and electricity are partly returned to the main farming process and partly used by residents of the area. In this way, a livestock farm and the inhabitants of a village or town can become energy self-sufficient and independent of national grids. The idea described in this paper shows the process of energy production combining a biogas plant, renewable energy sources, and an energy storage unit that enable farmland to become fully self-sufficient through the energy flow between all constituents of the energy cycle being maintained by a smart valve.

2021 ◽  
Vol 25 (4) ◽  
pp. 463-477
Author(s):  
S. G. Оbukhov ◽  
I. А. Plotnikov ◽  
V. G. Маsolov

We investigated the service life of storage batteries to provide recommendations on the design of energy storage systems used in islanded energy systems based on renewable power sources. The service life of maintenance-free, sealed lead-acid batteries produced by absorbed glass mat (AGM) technology was determined by endurance tests carried out by repeated charge/discharge cycles according to specified load profiles, implemented at a specialized Chroma Test System station. Three battery load profiles were simulated: one for the standard DC charge/discharge mode, and two for the charge/discharge modes from renewable energy sources. To this end, the actual data obtained from monitoring the operating modes of a wind power plant were used. It was found that the battery service life depends on the intensity of stress factors. Among them, the throughput factor has the most pronounced influence on the battery lifespan. To extend the service life of storage batteries, it is proposed to separate the charge/discharge modes in time. For batteries operated on renewable energy profiles, this approach decreases time intervals between full charges and at low battery levels, which increases the battery service life by 14%. A solution to designing an energy storage system for microgrids was proposed, which consists in the use of a combined double-circuit energy storage unit. An experimental prototype of such a unit with a power of 15 kW was developed. The use of a combined energy storage unit in the microgrid system: increases the battery service life by 20–30% compared to analogues; improves the static and dynamic stability of the local energy system with a response time of no more than 50 ms towards power change; allows a fuel replacement level of at least 25%; reduces the electricity cost by 25–30%.


2020 ◽  
Vol 2 (4) ◽  
pp. 219-230
Author(s):  
P. A. Khlyupin

Introduction: there is much concern about power supply to small and remote villages and industrial facilities, such as crude oil and gas fields, in the present-day power industry. Systems using renewable energy sources are the most innovative solutions to this problem. The need for electric energy storage units complicates the use of renewable energy sources. Versatile types of storage units, working on different principles, are in use now. Flywheels, working on the principle of mechanical accumulation of energy, are of particular interest.Methods: both traditional and advanced designs of electric energy accumulation systems are analyzed in the article. Recent advancements in machine building, power engineering and structural materials are contributed into structural elements of an electric energy accumulation system.Results and discussion: basic strengths and weaknesses of electric energy storage units were identified in the course of the analysis. The author substantiated the need for new effective electric energy storage units working on the principle of mechanical accumulation of potential and kinetic energy. The conclusion is that advanced engineering solutions, such as flywheels and energy efficient reversible electric machines, can boost the efficiency of electric power storage systems. The solution underlying the design of an energy efficient storage unit is offered to electric power industry players.Conclusion: the storage unit under development has flywheels and energy efficient reversible electric machines. It improves the energy efficiency of both classical power generation systems and those using renewable energy sources.


Author(s):  
A. Dominic Savio ◽  
Vimala Juliet A.

Electric vehicle (EV) charging station powered by the scattered energy sources with DC Nanogrid (NG) provides an option for uninterrupted charging. The NG powered by the renewable energy sources (RES) of photovoltaic (PV) and wind energy. When the excess power produced by the renewable energy stored in the local energy storage unit (ESU) utilized during shortage power from the renewable sources. During the overloading of NG and demand of energy in ESU; the mobile charging station (MCS) provides an uninterrupted charging. The MCS provides an option for battery swapping and vehicle to grid feasibility. The MCS required to monitor the state of charge (SOC) and state of health (SOH) of the battery. Monitoring of SOC and SOH related to the various battery parameters like voltage, current and temperature. A laboratory prototype is developed and tested the practical possibility of EV to NG and Internet of things (IoT) based monitoring of battery parameters.


Author(s):  
Mykola Stadnik ◽  
Iryna Gunko ◽  
Dmytro Protsenko

The paper analyzes the energy potential of autonomous power supply based on renewable energy sources in a livestock farm. Based on calculations of the amount of farm waste that act as raw materials for a biogas power plant, the amount of electricity that can be produced from biogas has been determined. The value of electricity generation was also determined when a biogas plant and solar panels are used together in order to fully cover the need for electricity. It has been established that the use of renewable energy sources for autonomous power supply has significant potential for growth, in particular, the generation of electricity by a biogas power plant is calculated according to the minimum indicators for a cattle farm, provides 57% of the required electricity, in addition, there is also thermal energy, which is used for heating farms. The combined operation of the biogas plant and solar panels installed on the roof of the farm allows to cover the need for electricity with a reduction factor of 2.6 solar panels generation. The use of biogas obtained from the waste of a cattle farm and together with solar panels makes it possible to cover the need for electricity with a significant reserve. For a typical farm of 100 cattle, this stock is about 80%. The use of which is possible with the use of energy storage devices and the formation of a biogas reserve. It has been established that the electrical power of a biogas plant, which works in conjunction with solar panels, should be at least the average value of the power consumption to provide autonomous power supply to consumers of the livestock farm, especially in the winter months when solar insolation is minimal.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
Vol 11 (11) ◽  
pp. 5142
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

The use of fossil fuels (coal, fuel, and natural gas) to generate electricity has been reduced in the European Union during the last few years, involving a significant decrease in greenhouse gas emissions [...]


Sign in / Sign up

Export Citation Format

Share Document