scholarly journals Reverse Osmosis Desalination Plants Energy Consumption Management and Optimization for Improving Power Systems Voltage Stability with PV Generation Resources

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7739
Author(s):  
Zeyad A. Haidar ◽  
Mamdooh Al-Saud ◽  
Jamel Orfi ◽  
Hany Al-Ansary

This paper studies energy consumption management of seawater Reverse Osmosis (RO) desalination plants to maintain and enhance the Voltage Stability (VS) of Power Systems (PS) with Photovoltaic (PV) plant integration. We proposed a voltage-based management algorithm to determine the maximum power consumption for RO plants. The algorithm uses power flow study to determine the RO plant power consumption allowed within the voltage-permissible limits, considering the RO process constraints in order to maintain the desired fresh water supply. Three cases were studied for the proposed RO plant: typical operation with constant power consumption, controlled operation using ON/OFF scheduling of the High-Pressure Pumps (HPPs) and controlled operation using Variable Frequency Drive (VFD) control. A modified IEEE 30-bus system with a variable load was used as a case study with integration of three PV plants of 75 MWp total power capacity. The adopted 33.33 MW RO plant has a maximum capacity of 200,000 m3/day of fresh water production. The results reveal that while typical operation of RO plants can lead to voltage violation, applying the proposed load management algorithm can maintain the vs. of the PS. The total transmission power loss and power lines loading were also reduced. However, the study shows that applying VFD control is better than using ON/OFF control because the latter involves frequent starting up/shutting down the RO trains, which consequently requires flushing and cleaning procedures. Moreover, the specific energy consumption (SEC) and RO plant recover ratio decreases proportionally to the VFD output. Furthermore, the power consumption of the RO plant was optimized using the PSO technique to avoid unnecessary restriction of RO plant operation and water shortage likelihood.

Author(s):  
Alexander Fayer

This document discusses operation of desalination system permanently extracting water from hydrogel draw agent by specially selected wicks. Due to its peculiarity the system combines advantages of both forward and reverse osmosis approaches such as, low power consumption, passive process of a freshwater extraction, continuous duty cycle and scaling possibility. While in modern systems an energy consumption of seawater desalination reaches of about 3 kWh/m 3, including pre-filtering and ancillaries [1], the same parameter for the specific system expected to be as low as for local fresh water supplyi.e., 0.2 kWh/m 3


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 781
Author(s):  
Federico Leon ◽  
Alejandro Ramos ◽  
S. Ovidio Perez-Baez

This article shows the optimization of the reverse osmosis process in seawater desalination plants, taking the example of the Canary Islands, where there are more than 320 units of different sizes, both private and public. The objective is to improve the energy efficiency of the system in order to save on operation costs as well as reduce the carbon and ecological footprints. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system. Accounting for the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve the energy efficiency. The energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the seawater desalination plant, as it is shown in this study.


2020 ◽  
Vol 10 (7) ◽  
pp. 2323
Author(s):  
T. Renugadevi ◽  
K. Geetha ◽  
K. Muthukumar ◽  
Zong Woo Geem

Drastic variations in high-performance computing workloads lead to the commencement of large number of datacenters. To revolutionize themselves as green datacenters, these data centers are assured to reduce their energy consumption without compromising the performance. The energy consumption of the processor is considered as an important metric for power reduction in servers as it accounts to 60% of the total power consumption. In this research work, a power-aware algorithm (PA) and an adaptive harmony search algorithm (AHSA) are proposed for the placement of reserved virtual machines in the datacenters to reduce the power consumption of servers. Modification of the standard harmony search algorithm is inevitable to suit this specific problem with varying global search space in each allocation interval. A task distribution algorithm is also proposed to distribute and balance the workload among the servers to evade over-utilization of servers which is unique of its kind against traditional virtual machine consolidation approaches that intend to restrain the number of powered on servers to the minimum as possible. Different policies for overload host selection and virtual machine selection are discussed for load balancing. The observations endorse that the AHSA outperforms, and yields better results towards the objective than, the PA algorithm and the existing counterparts.


2013 ◽  
Vol 821-822 ◽  
pp. 1098-1101
Author(s):  
Wei Xing Li ◽  
Jing Huan Ma ◽  
Ying Liu ◽  
Qing Tong Ren ◽  
Zhan Sheng Ma

Reverse Osmosis (RO) is an effective method to get fresh water from seawater or brackish water. The uncontrolled discharge of RO concentrated brine can contaminate water aquifers and damage marine ecosystems. The techniques to treat or utilize the rejected brine are the research focus in recent years. This paper tried to give an overview of latest development in this filed in order to provide references for its actual application in large-scale engineering.


2020 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Ahmed Remlaoui ◽  
Hammou Soumia, Bent Abdelkader Nafissa .

This article deals with the desalination of seawater and brackish water, which can deal with the problem of water scarcity that threatens certain countries in the world; it is now possible to meet the demand for drinking water.  Currently,  among  the  various  desalination  processes,  the  reverse  osmosis  technique  is  the  most  used. Electrical energy consumption is the most attractive factor in the cost of operating seawater by reverse osmosis in desalination plants.  Desalination  of  water by  solar  energy  can be  considered  as a  very  important  drinking  water alternative.  For  determining  the  electrical  energy  consumption  of  a  single  reverse  osmosis  module,  we  used  the  System  Advisor  Model  (SAM)  to  determine  the  technical  characteristics  and  costs  of  a  parabolic  cylindrical installation and Reverse Osmosis System Analysis (ROSA) to obtain the electrical power of a single reverse osmosis module. The electrical power of a single module is 4101 KW; this is consistent with the manufacturer's data that this power must be between 3900 kW and 4300 KW. Thus, the energy consumption of the system is 4.92 KWh/m3.Thermal power produced by the solar cylindro-parabolic field during the month of May has the maximum that is 208MWth, and the minimum value during the month of April, which equals 6 MWth. Electrical power produced by the plant varied between 47MWe, and 23.8MWe. The maximum energy was generated during the month of July (1900 MWh) with the maximum energy stored (118 MWh).


Nowadays, many countries have started to implement and installed solar photovoltaic (PV). The initial designs of existing power systems were not integrating with any renewable energy (RE) including PV. So, the small scale PV may not have any effect on these power systems. However, integrating large scale PV might raise several power quality issues including power system stability. Power system stability has become major attention where the main focus is on voltage stability.Voltage stability is related on electrical grid capacity to balance the Total Power of Demand (PD) and Total Power generated by Generator (Pgtt). Instability of the voltage can cause inability of the power system to meet the demand of reactive power. The lack of reactive power will cause instability in the power system.This paper present optimal placement and sizing of PV for stability enhancement and operating cost minimization. In this research, reactive power has gradually increased and Fast Voltage Stability Index (FVSI) is applied to analyze voltage stability. PV is applied to stabilize voltage stability of the power system. Economic Load Dispatch (ELD) is conducted to determine the optimal cost and loss. DEIANT is conducted to optimize the total cost and the total loss after solar PV implementation. Simulation result indicates the effectiveness of the proposed technique for stability enhancement and operating cost minimization.


Author(s):  
Tran Hoang Vu ◽  
Vu Cong Luc

In  this  paper,  we  present  a  design  and  an evaluation  of  two  power  management  modes  that reduce the  energy  consumption  of OpenFlow switches. First,  we  define  two  new  low  power  modes:  SLEEP PORT  and  SLEEP  SWITCH,  which  reduce   energy consumption   in  cases  where  packets  on  port  or switches  are  absent.  Second,  we  present  a  Wake  on LAN  (WOL)  method  for  OpenFlow  Switches  to  wake up  Ethernet  ports  or  the  whole  switch  from  inactive states.  Finally,  we  describe  our  design,  experimental results and  performance evaluations. Our results show that the control SLEEP PORT mode on a switch might save  about 9.8% power consumption per  port,  and  up to about 60% of total power consumption of the switch with SLEEP  SWITCH mode.  In  addition,  we  will implement  this  method  to  Openflow  Switch  bases  on NetFPGA- 10 Gigabit in the future.


2021 ◽  
Vol 267 ◽  
pp. 01006
Author(s):  
Guohua He ◽  
Xiaoling Li ◽  
Shan Jiang ◽  
Yongnan Zhu ◽  
Fan He ◽  
...  

This paper takes each province and region as the research object and 2017 as the research period, and the energy consumption of China’s social water cycle process was analyzed. The results showed that the total power consumption of China’s social water cycle process was 1082.81 billion kWh, accounting for 17.2% of the total power consumption of China’s society in 2017. Terminal water consumption is the biggest energy consumption. Based on the calculated results, this study puts forward relevant suggestions for realizing energy-water coordinated security.


2014 ◽  
Vol 7 (12) ◽  
pp. 3921-3933 ◽  
Author(s):  
Ahmed ElMekawy ◽  
Hanaa M. Hegab ◽  
Deepak Pant

The combined negative effect of both fresh water shortage and energy depletion has encouraged the research to move forward to explore effective solutions for water desalination with less energy consumption.


Sign in / Sign up

Export Citation Format

Share Document