scholarly journals Wave Energy Converter’s Slack and Stiff Connection: Study of Absorbed Power in Irregular Waves

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7892
Author(s):  
Tatiana Potapenko ◽  
Joseph Burchell ◽  
Sandra Eriksson ◽  
Irina Temiz

Two different concepts of wave energy converter coupled to the novel C-GEN linear generator have been studied numerically, including the evaluation of different buoy sizes. The first concept has a slack connection between the buoy and the generator on the seabed. Another concept is based on a stiff connection between the buoy and the generator placed on an offshore platform. Three different approaches to calculate the damping force have been utilized within this study: the optimal damping coefficient, R-load, and RC-load. R-load is a model for the load applied to a grid-connected generator with passive rectification. RC-load is a model for a phase angle compensation applied to a system with active rectification. The radiation forces originating from the oscillatory motion of the buoy have been approximated using the transfer function in the frequency domain and the vector fitting algorithm. A comparison of the approximation methods is presented, and their accuracy has been evaluated. The advantage of the vector fitting method has been shown, especially for higher approximation orders which fit the transfer function with high accuracy. The study’s final results are shown in terms of the absorbed power for the sea states of March 2018 at Wave Hub, UK.

Author(s):  
Jørgen Hals ◽  
Johannes Falnes ◽  
Torgeir Moan

Wave-energy converters of the point-absorbing type (i.e., having small extension compared with the wavelength) are promising for achieving cost reductions and design improvements because of a high power-to-volume ratio and better possibilities for mass production of components and devices as compared with larger converter units. However, their frequency response tends to be narrow banded, which means that the performance in real seas (irregular waves) will be poor unless their motion is actively controlled. Only then the invested equipment can be fully exploited, bringing down the overall energy cost. In this work various control methods for point-absorbing devices are reviewed, and a representative selection of methods is investigated by numerical simulation in irregular waves, based on an idealized example of a heaving semisubmerged sphere. Methods include velocity-proportional control, approximate complex conjugated control, approximate optimal velocity tracking, phase control by latching and clutching, and model-predictive control, all assuming a wave pressure measurement as the only external input to the controller. The methods are applied for a single-degree-of-freedom heaving buoy. Suggestions are given on how to implement the controllers, including how to tune control parameters and handle amplitude constraints. Based on simulation results, comparisons are made on absorbed power, reactive power flow, peak-to-average power ratios, and implementation complexity. Identified strengths and weaknesses of each method are highlighted and explored. It is found that overall improvements in average absorbed power of about 100–330% are achieved for the investigated controllers as compared with a control strategy with velocity-proportional machinery force. One interesting finding is the low peak-to-average ratios resulting from clutching control for wave periods about 1.5 times the resonance period and above.


Author(s):  
Claudio A. Rodríguez ◽  
Paulo Rosa-Santos ◽  
Francisco Taveira-Pinto

The performance assessment of a wave energy converter (WEC) is a key task. Depending on the layout of the WEC system and type of power take-off (PTO) mechanism, the determination of the absorbed power at model scale involves several challenges, particularly when the measurement of PTO forces is not available. In irregular waves, the task is even more difficult due to the random character of forces and motions. Recent studies carried out with kinetic energy harvesters (KEH) have proposed expressions for the estimation of the power based only on the measured motions. Assuming that the WEC behaves as a KEH at model scale, the expressions for power estimation of KEHs have been heuristically adapted to WECs. CECO, a floating-point absorber, has been used as case study. Experimental data from model tests in irregular waves are presented and analyzed. Spectral analyses have been applied to investigate the WEC responses in the frequency domain and to derive expressions to estimate the absorbed power in irregular waves. The experimental transfer functions of the WEC motions demonstrated that the PTO damping is significantly affected by the incident waves. Based on KEH approach's results, absorbed power and PTO damping coefficients have been estimated. A linear numerical potential model to compute transfer functions has been also implemented and calibrated based on the experimental results. The numerical results allowed the estimation of combined viscous and losses effects and showed that although the KEH approach underestimated the absorbed power, qualitatively reproduced the WEC performance in waves.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4424
Author(s):  
Yue Hong ◽  
Mikael Eriksson ◽  
Cecilia Boström ◽  
Jianfei Pan ◽  
Yun Liu ◽  
...  

The damping effect, induced inside the linear generator, is a vital factor to improve the conversion efficiency of wave energy converters (WEC). As part of the mechanical design, the translator mass affects the damping force and eventually affects the performance of the WEC by converting wave energy into electricity. This paper proposes research on the damping effect coupled with translator mass regarding the generated power from WEC. Complicated influences from ocean wave climates along the west coast of Sweden are also included. This paper first compares three cases of translator mass with varied damping effects. A further investigation on coupling effects is performed using annual energy absorption under a series of sea states. Results suggest that a heavier translator may promote the damping effect and therefore improve the power production. However, the hinder effect is also observed and analyzed in specific cases. In this paper, the variations in the optimal damping coefficient are observed and discussed along with different cases.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 920
Author(s):  
Yue Hong ◽  
Irina Temiz ◽  
Jianfei Pan ◽  
Mikael Eriksson ◽  
Cecilia Boström

Wave energy converters (WECs), which are designed to harvest ocean wave energy, have recently been improved by the installation of numerous conversion mechanisms; however, it is still difficult to find an appropriate method that can compromise between strong environmental impact and robust performance by transforming irregular wave energy into stable electrical power. To solve this problem, an investigation into the impact of varied wave conditions on the dynamics of WECs and to determine an optimal factor for WECs to comply with long-term impacts was performed. In this work, we researched the performance of WECs influenced by wave climates. We used a permanent magnet linear generator (PMLG)-based WEC that was invented at Uppsala University. The damping effect was first studied with a PMLG-type WEC. Then, a group of sea states was selected to investigate their impact on the power production of the WEC. Two research sites were chosen to investigate the WEC’s annual energy production as well as a study on the optimal damping coefficient impact. In addition, we compared the WEC’s energy production between optimal damping and constant damping under a full range of sea states at both sites. Our results show that there is an optimal damping coefficient that can achieve the WEC’s maximum power output. For the chosen research sites, only a few optimal damping coefficients were able to contribute over 90% of the WEC’s annual energy production. In light of the comparison between optimal and constant damping, we conclude that, for specific regions, constant damping might be a better choice for WECs to optimize long-term energy production.


2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
Miguel Calvário ◽  
C. Guedes Soares

Abstract This paper presents the adaptation of a torus wave energy converter prime mover to an onshore or nearshore fixed platform, by a hinged arm. An optimization code is developed to obtain the best torus and arm geometry, as well as the power take-off parameters, taking as objective function the maximization of total wave absorbed power. In this paper, the power take-off system is modelled as a simplified damper and spring system, where the parameters are optimized for the phase control of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. Finally, the optimal result for the productive sea state indicates that the absorbed power is relatively considerable while a better survivability performance is expected from a torus wave energy converter compared to a conventional truncated prime mover.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2899 ◽  
Author(s):  
Gael Verao Fernandez ◽  
Philip Balitsky ◽  
Vasiliki Stratigaki ◽  
Peter Troch

For renewable wave energy to operate at grid scale, large arrays of Wave Energy Converters (WECs) need to be deployed in the ocean. Due to the hydrodynamic interactions between the individual WECs of an array, the overall power absorption and surrounding wave field will be affected, both close to the WECs (near field effects) and at large distances from their location (far field effects). Therefore, it is essential to model both the near field and far field effects of WEC arrays. It is difficult, however, to model both effects using a single numerical model that offers the desired accuracy at a reasonable computational time. The objective of this paper is to present a generic coupling methodology that will allow to model both effects accurately. The presented coupling methodology is exemplified using the mild slope wave propagation model MILDwave and the Boundary Elements Methods (BEM) solver NEMOH. NEMOH is used to model the near field effects while MILDwave is used to model the WEC array far field effects. The information between the two models is transferred using a one-way coupling. The results of the NEMOH-MILDwave coupled model are compared to the results from using only NEMOH for various test cases in uniform water depth. Additionally, the NEMOH-MILDwave coupled model is validated against available experimental wave data for a 9-WEC array. The coupling methodology proves to be a reliable numerical tool as the results demonstrate a difference between the numerical simulations results smaller than 5% and between the numerical simulations results and the experimental data ranging from 3% to 11%. The simulations are subsequently extended for a varying bathymetry, which will affect the far field effects. As a result, our coupled model proves to be a suitable numerical tool for simulating far field effects of WEC arrays for regular and irregular waves over a varying bathymetry.


1984 ◽  
Vol 1 (19) ◽  
pp. 186
Author(s):  
Daniel L. Behnke ◽  
Frederic Raichlen

An extensive program of stability experiments in a highly detailed three-dimensional model has recently been completed to define a reconstruction technique for a damaged breakwater (Lillevang, Raichlen, Cox, and Behnke, 1984). Tests were conducted with both regular waves and irregular waves from various directions incident upon the breakwater. In comparison of the results of the regular wave tests to those of the irregular wave tests, a relation appeared to exist between breakwater damage and the accumulated energy to which the structure had been exposed. The energy delivered per wave is defined, as an approximation, as relating to the product of H2 and L, where H is the significant height of a train of irregular waves and L is the wave length at a selected depth, calculated according to small amplitude wave theory using a wave period corresponding to the peak energy of the spectrum. As applied in regular wave testing, H is the uniform wave height and L is that associated with the period of the simple wave train. The damage in the model due to regular waves and that caused by irregular waves has been related through the use of the cumulative wave energy contained in those waves which have an energy greater than a threshold value for the breakwater.


2012 ◽  
Vol 1 (33) ◽  
pp. 5 ◽  
Author(s):  
Hernan Fernandez ◽  
Gregorio Iglesias ◽  
Rodrigo Carballo ◽  
Alberte Castro ◽  
Marcos Sánchez ◽  
...  

The development of efficient, reliable Wave Energy Converters (WECs) is a prerequisite for wave energy to become a commercially viable energy source. Intensive research is currently under way on a number of WECs, among which WaveCat©—a new WEC recently patented by the University of Santiago de Compostela. In this sense, this paper describes the WaveCat concept and its ongoing development and optimization. WaveCat is a floating WEC intended for operation in intermediate water depths (50–100 m). Like a catamaran, it consists of two hulls—from which it derives its name. The difference with a conventional catamaran is that the hulls are not parallel but convergent; they are joined at the stern, forming a wedge in plan view. Physical model tests of a 1:30 model were conducted in a wave tank using both regular and irregular waves. In addition to the waves and overtopping rates, the model displacements were monitored using a non-intrusive system. The results of the physical model tests will be used to validate the 3D numerical model, which in turn will be used to optimize the design of WaveCat for best performance under a given set of wave conditions.


Sign in / Sign up

Export Citation Format

Share Document