scholarly journals Visual Simultaneous Localization and Mapping (vSLAM) of Driverless Car in GPS-Denied Areas

2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Abira Kanwal ◽  
Zunaira Anjum ◽  
Wasif Muhammad

A simultaneous localization and mapping (SLAM) algorithm allows a mobile robot or a driverless car to determine its location in an unknown and dynamic environment where it is placed, and simultaneously allows it to build a consistent map of that environment. Driverless cars are becoming an emerging reality from science fiction, but there is still too much required for the development of technological breakthroughs for their control, guidance, safety, and health related issues. One existing problem which is required to be addressed is SLAM of driverless car in GPS denied-areas, i.e., congested urban areas with large buildings where GPS signals are weak as a result of congested infrastructure. Due to poor reception of GPS signals in these areas, there is an immense need to localize and route driverless car using onboard sensory modalities, e.g., LIDAR, RADAR, etc., without being dependent on GPS information for its navigation and control. The driverless car SLAM using LIDAR and RADAR involves costly sensors, which appears to be a limitation of this approach. To overcome these limitations, in this article we propose a visual information-based SLAM (vSLAM) algorithm for GPS-denied areas using a cheap video camera. As a front-end process, features-based monocular visual odometry (VO) on grayscale input image frames is performed. Random Sample Consensus (RANSAC) refinement and global pose estimation is performed as a back-end process. The results obtained from the proposed approach demonstrate 95% accuracy with a maximum mean error of 4.98.

2018 ◽  
Vol 28 (3) ◽  
pp. 505-519
Author(s):  
Demeng Li ◽  
Jihong Zhua ◽  
Benlian Xu ◽  
Mingli Lu ◽  
Mingyue Li

Abstract Inspired by ant foraging, as well as modeling of the feature map and measurements as random finite sets, a novel formulation in an ant colony framework is proposed to jointly estimate the map and the vehicle trajectory so as to solve a feature-based simultaneous localization and mapping (SLAM) problem. This so-called ant-PHD-SLAM algorithm allows decomposing the recursion for the joint map-trajectory posterior density into a jointly propagated posterior density of the vehicle trajectory and the posterior density of the feature map conditioned on the vehicle trajectory. More specifically, an ant-PHD filter is proposed to jointly estimate the number of map features and their locations, namely, using the powerful search ability and collective cooperation of ants to complete the PHD-SLAM filter time prediction and data update process. Meanwhile, a novel fast moving ant estimator (F-MAE) is utilized to estimate the maneuvering vehicle trajectory. Evaluation and comparison using several numerical examples show a performance improvement over recently reported approaches. Moreover, the experimental results based on the robot operation system (ROS) platform validate the consistency with the results obtained from numerical simulations.


Author(s):  
N. Botteghi ◽  
B. Sirmacek ◽  
R. Schulte ◽  
M. Poel ◽  
C. Brune

Abstract. In this research, we investigate the use of Reinforcement Learning (RL) for an effective and robust solution for exploring unknown and indoor environments and reconstructing their maps. We benefit from a Simultaneous Localization and Mapping (SLAM) algorithm for real-time robot localization and mapping. Three different reward functions are compared and tested in different environments with growing complexity. The performances of the three different RL-based path planners are assessed not only on the training environments, but also on an a priori unseen environment to test the generalization properties of the policies. The results indicate that RL-based planners trained to maximize the coverage of the map are able to consistently explore and construct the maps of different indoor environments.


2013 ◽  
Vol 765-767 ◽  
pp. 1932-1935
Author(s):  
Zeng Xiang Yang ◽  
Sai Jin

To decrease the uncertainty of simultaneous localization and mapping of UAV, and at the same time, to increase the speed of searching the unknown environment at which UAV locates, an active SLAM trajectory programming algorithm is proposed based on optimal control. Therefore, UAV SLAM is tackled as a combined optimization problem, considering the precision of UAV location and mapping integrity. Based on the simplified UAV plane motion model, this algorithm is simulated and tested by comparing with the random SLAM algorithm. Simulation results show that this algorithm is effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Inam Ullah ◽  
Xin Su ◽  
Xuewu Zhang ◽  
Dongmin Choi

For more than two decades, the issue of simultaneous localization and mapping (SLAM) has gained more attention from researchers and remains an influential topic in robotics. Currently, various algorithms of the mobile robot SLAM have been investigated. However, the probability-based mobile robot SLAM algorithm is often used in the unknown environment. In this paper, the authors proposed two main algorithms of localization. First is the linear Kalman Filter (KF) SLAM, which consists of five phases, such as (a) motionless robot with absolute measurement, (b) moving vehicle with absolute measurement, (c) motionless robot with relative measurement, (d) moving vehicle with relative measurement, and (e) moving vehicle with relative measurement while the robot location is not detected. The second localization algorithm is the SLAM with the Extended Kalman Filter (EKF). Finally, the proposed SLAM algorithms are tested by simulations to be efficient and viable. The simulation results show that the presented SLAM approaches can accurately locate the landmark and mobile robot.


2021 ◽  
Vol 11 (4) ◽  
pp. 1828
Author(s):  
Yakun Wu ◽  
Li Luo ◽  
Shujuan Yin ◽  
Mengqi Yu ◽  
Fei Qiao ◽  
...  

The Simultaneous Localization and Mapping (SLAM) algorithm is a hotspot in robot application research with the ability to help mobile robots solve the most fundamental problems of “localization” and “mapping”. The visual semantic SLAM algorithm fused with semantic information enables robots to understand the surrounding environment better, thus dealing with complexity and variability of real application scenarios. DS-SLAM (Semantic SLAM towards Dynamic Environment), one of the representative works in visual semantic SLAM, enhances the robustness in the dynamic scene through semantic information. However, the introduction of deep learning increases the complexity of the system, which makes it a considerable challenge to achieve the real-time semantic SLAM system on the low-power embedded platform. In this paper, we realized the high energy-efficiency DS-SLAM algorithm on the Field Programmable Gate Array (FPGA) based heterogeneous platform through the optimization co-design of software and hardware with the help of OpenCL (Open Computing Language) development flow. Compared with Intel i7 CPU on the TUM dataset, our accelerator achieves up to 13× frame rate improvement, and up to 18× energy efficiency improvement, without significant loss in accuracy.


2012 ◽  
Vol 28 (1) ◽  
pp. 35-57 ◽  
Author(s):  
Fernando A. Auat Cheein ◽  
Fernando M. Lobo Pereira ◽  
Fernando di Sciascio ◽  
Ricardo Carelli

AbstractThis paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5288 ◽  
Author(s):  
Yanli Liu ◽  
Heng Zhang ◽  
Chao Huang

In this paper, we present a novel red-green-blue-depth simultaneous localization and mapping (RGB-D SLAM) algorithm based on cloud robotics, which combines RGB-D SLAM with the cloud robot and offloads the back-end process of the RGB-D SLAM algorithm to the cloud. This paper analyzes the front and back parts of the original RGB-D SLAM algorithm and improves the algorithm from three aspects: feature extraction, point cloud registration, and pose optimization. Experiments show the superiority of the improved algorithm. In addition, taking advantage of the cloud robotics, the RGB-D SLAM algorithm is combined with the cloud robot and the back-end part of the computationally intensive algorithm is offloaded to the cloud. Experimental validation is provided, which compares the cloud robotic-based RGB-D SLAM algorithm with the local RGB-D SLAM algorithm. The results of the experiments demonstrate the superiority of our framework. The combination of cloud robotics and RGB-D SLAM can not only improve the efficiency of SLAM but also reduce the robot’s price and size.


Author(s):  
Hui Xiong ◽  
Youping Chen ◽  
Xiaoping Li ◽  
Bing Chen

PurposeBecause submaps including a subset of the global map contain more environmental information, submap-based graph simultaneous localization and mapping (SLAM) has been studied by many researchers. In most of those studies, helpful environmental information was not taken into consideration when designed the termination criterion of the submap construction process. After optimizing the graph, cumulative error within the submaps was also ignored. To address those problems, this paper aims to propose a two-level optimized graph-based SLAM algorithm.Design/methodology/approachSubmaps are updated by extended Kalman filter SLAM while no geometric-shaped landmark models are needed; raw laser scans are treated as landmarks. A more reasonable criterion called the uncertainty index is proposed to combine with the size of the submap to terminate the submap construction process. After a submap is completed and a loop closure is found, a two-level optimization process is performed to minimize the loop closure error and the accumulated error within the submaps.FindingsSimulation and experimental results indicate that the estimated error of the proposed algorithm is small, and the maps generated are consistent whether in global or local.Practical implicationsThe proposed method is robust to sparse pedestrians and can be adapted to most indoor environments.Originality/valueIn this paper, a two-level optimized graph-based SLAM algorithm is proposed.


2021 ◽  
Vol 13 (9) ◽  
pp. 1625
Author(s):  
Zesheng Dan ◽  
Baowang Lian ◽  
Chengkai Tang

In multipath-assisted simultaneous localization and mapping (SLAM), the geometric association of specular multipath components based on radio signals with environmental features is used to simultaneously localize user equipment and map the environment. We must contend with two notable model parameter uncertainties in multipath-assisted SLAM: process noise and clutter intensity. Knowledge of these two parameters is critically important to multipath-assisted SLAM, the uncertainty of which will seriously affect the SLAM accuracy. Conventional multipath-assisted SLAM algorithms generally regard these model parameters as fixed and known, which cannot meet the challenges presented in complicated environments. We address this challenge by improving the belief propagation (BP)-based SLAM algorithm and proposing a robust multipath-assisted SLAM algorithm that can accommodate model mismatch in process noise and clutter intensity. Specifically, we describe the evolution of the process noise variance and clutter intensity via Markov chain models and integrate them into the factor graph representing the Bayesian model of the multipath-assisted SLAM. Then, the BP message passing algorithm is leveraged to calculate the marginal posterior distributions of the user equipment, environmental features and unknown model parameters to achieve the goals of simultaneous localization and mapping, as well as adaptively learning the process noise variance and clutter intensity. Finally, the simulation results demonstrate that the proposed approach is robust against the uncertainty of the process noise and clutter intensity and shows excellent performances in challenging indoor environments.


Sign in / Sign up

Export Citation Format

Share Document