scholarly journals A Way to Membrane-Based Environmental Remediation for Heavy Metal Removal

Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 52
Author(s):  
Catia Algieri ◽  
Sudip Chakraborty ◽  
Sebastiano Candamano

During the last century, industrialization has grown very fast and as a result heavy metals have contaminated many water sources. Due to their high toxicity, these pollutants are hazardous for humans, fish, and aquatic flora. Traditional techniques for their removal are adsorption, electro-dialysis, precipitation, and ion exchange, but they all present various drawbacks. Membrane technology represents an exciting alternative to the traditional ones characterized by high efficiency, low energy consumption and waste production, mild operating conditions, and easy scale-up. In this review, the attention has been focused on applying driven-pressure membrane processes for heavy metal removal, highlighting each of the positive and negative aspects. Advantages and disadvantages, and recent progress on the production of nanocomposite membranes and electrospun nanofiber membranes for the adsorption of heavy metal ions have also been reported and critically discussed. Finally, future prospective research activities and the key steps required to make their use effective on an industrial scale have been presented

Chemosphere ◽  
2021 ◽  
pp. 131959
Author(s):  
Anh Tuan Hoang ◽  
Sandro Nižetić ◽  
Chin Kui Cheng ◽  
Rafael Luque ◽  
Sabu Thomas ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Thair Sharif Khayyun ◽  
Ayad Hameed Mseer

Abstract The purpose of this study was to investigate the possibility of the limestone as an adsorbed media and low-cost adsorbent. Batch adsorption studies were conducted to examine the effects of the parameters such as initial metal ion concentration C0, particle size of limestone DL, adsorbent dosage and equilibrium concentration of heavy metal Ce on the removal of the heavy metal (Cu) from synthetic water solution by limestone. The removal efficiency is increased with the increase in the volume of limestone (influenced by the media specific area). It has been noted that the limestone with diameter of 3.75 is the most effective size for removal of copper from synthetic solution. The adsorption data were analyzed by the Langmuir and Freundlich isotherm model. The average values of the empirical constant and adsorption constant (saturation coefficient) for the Langmuir equation were a = 0.022 mg/g and b = 1.46 l/mg, respectively. The average values of the Freundlich adsorption constant and empirical coefficient were Kf = 0.010 mg/g and n = 1.58 l/mg, respectively. It was observed that the Freundlich isotherm model described the adsorption process with high coefficient of determination R2, better than the Langmuir isotherm model and for low initial concentration of heavy metal. Also, when the values of amount of heavy metal removal from solution are predicted by the Freundlich isotherm model, it showed best fits the batch study. It is clear from the results that heavy metal (Cu) removal with the limestone adsorbent appears to be technically feasible and with high efficiency.


2020 ◽  
Vol 33 ◽  
pp. 101026 ◽  
Author(s):  
Li Shen ◽  
Junjun Wang ◽  
Zhanfei Li ◽  
Ling Fan ◽  
Ran Chen ◽  
...  

2011 ◽  
Vol 71-78 ◽  
pp. 2903-2906
Author(s):  
Liang Guo ◽  
Xiao Ming Li ◽  
Yi Zhou ◽  
Zong Lian She

In order to promote the hydrolysis and disintegration of waste sludge, the most logical approach is pretreatments to disrupt the microbial cells of sludge. After microwave pretreatments, the heavy metal which were toxicity to H2 production were released from waste sludge, and the increase rate was 10.6 (Cu), 5.5(Cd), 3.6(Zn) and 1.6 (Ni) times after pretreatment. Carbonate hydroxylapatite (CHAP) had high efficiency in heavy metal removal. In this study, the effect of heavy metal removal on bio-hydrogen production from microwave pretreated sludge using CHAP was evaluated. 0.53 g/gVSS CHAP addition could enhance the bio-hydrogen yield by 53.6% compared with control, and the lag time was 9 h. Dosages of CHAP couldinfluence the hydrolysis, fermentation type and hydrogen yield of pretreated sludge.


2015 ◽  
Vol 73 (5) ◽  
pp. 983-992 ◽  
Author(s):  
Francis Ntumba Muya ◽  
Christopher Edoze Sunday ◽  
Priscilla Baker ◽  
Emmanuel Iwuoha

Heavy metal ions such as Cd2+, Pb2+, Cu2+, Mg2+, and Hg2+ from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1–100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.


2020 ◽  
Vol 6 (2) ◽  
pp. 258-282 ◽  
Author(s):  
Raylin Chen ◽  
Thomas Sheehan ◽  
Jing Lian Ng ◽  
Matthew Brucks ◽  
Xiao Su

Electrosorption and capacitive deionization technologies can be effective processes in removing heavy metal for water purification, wastewater treatment, resource recovery, and environmental remediation.


2021 ◽  
Vol 13 (2) ◽  
pp. 713
Author(s):  
Guo Yu ◽  
Xinshuai Wang ◽  
Jie Liu ◽  
Pingping Jiang ◽  
Shaohong You ◽  
...  

Heavy metals are toxic and non-biodegradable environmental contaminants that seriously threaten human health. The remediation of heavy metal-contaminated water and soil is an urgent issue from both environmental and biological points of view. Recently, nanomaterials with excellent adsorption capacities, great chemical reactivity, active atomicity, and environmentally friendly performance have attracted widespread interest as potential adsorbents for heavy metal removal. This review first introduces the application of nanomaterials for removing heavy metal ions from the environment. Then, the environmental factors affecting the adsorption of nanomaterials, their toxicity, and environmental risks are discussed. Finally, the challenges and opportunities of applying nanomaterials in environmental remediation are discussed, which can provide perspectives for future in-depth studies and applications.


2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Siti Wahidah Puasa ◽  
Kamariah Noor Ismail ◽  
Muhammad Amarul Aliff Bin Mahadi ◽  
Nur Ain Zainuddin ◽  
Mohd Nazmi Mohd Mukelas

Wastewater produced from the electroplating industry generally consists of heavy metals mixture and organic materials that need to be treated before it can be discharged to the environment. Thus, the present investigation was focused on the selectivity removal of heavy metal mixtures consists of Copper (Cu), Cadmium (Cd), and Zinc (Zn). Several operating conditions, including the effect of pH and coagulant (FeCl3) dosage, were varied to find the best performance of heavy metal removal. Results show the efficiency of heavy metals removal for both wastewater characteristics were approximately 99%. The experimental data on the treatment of synthetic wastewater was plotted using polynomial regression (PR) via Excel software. The value of adjusted R2 obtained for the final concentration of Cu, Zn, and Cd after treatment were 0.6884, 0.9676, and 0.9283, respectively, which shows data were acceptably fitted for Cu and very well fitted for Zn and Cd. The coagulation/flocculation process performed on actual wastewater shows that the lowest final concentration of Cu, Zn, and Cd after treatment were 0.487, 1.232, and 0 mg/L respectively at pH of 12.


2009 ◽  
Vol 28 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Zhigang Ya ◽  
Lifa Zhou ◽  
Zhengyu Bao ◽  
Pu Gao ◽  
Xingwang Sun

2018 ◽  
Vol 773 ◽  
pp. 373-378 ◽  
Author(s):  
Sujitra Onutai ◽  
Takaomi Kobayashi ◽  
Parjaree Thavorniti ◽  
Sirithan Jiemsirilers

This work aims to evaluate the effectiveness of fly ash based geopolymer powder as an adsorbent for heavy metals in aqueous solution. The structure of synthesized geopolymer was found to be highly amorphous due to the dissolution of fly ash phase. Moreover, the fly ash geopolymer powder has higher surface area compares to original fly ash with specific surface area of 85.01 m²/g and 0.83 m2/g, respectively. For this reason, the geopolymer powder has much higher removal efficiency compared to the original fly ash powder. The removal efficiency was affected by contact time, geopolymer amount, heavy metal initial concentration, pH, and temperature. The four heavy metals were chosen (Pb2+, Cu2+, Ni2+, Cd2+) for adsorption test. The highest heavy metal removal capacity was obtained at pH 5. The geopolymer powder adsorbed metal cations in the order of Pb2+>Cu2+>Cd2+>Ni2+. In addition, Langmuir model is more suitable for fly ash geopolymer powder adsorption of heavy metal ions in aqueous solution than Freundlich model. The results showed that the fly ash geopolymer powder has high efficiency for removal metal which could be employed excellent alternative for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document