scholarly journals An Environmental Approach to Understanding the Expansion of Future Vineyards: Case Study of Soil Developed on Alluvial Sediments

Environments ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 96
Author(s):  
Raimundo Jiménez-Ballesta ◽  
Sandra Bravo ◽  
Jose Angel Amorós ◽  
Caridad Pérez-de-los-Reyes ◽  
Jesus García-Pradas ◽  
...  

The importance of soil properties in wine grape production is generally treated as secondary to climate and canopy management. This study was undertaken to characterize and classify a singular soil resource for a vineyard in a traditional viticultural region: Castilla-La Mancha, central Spain. The soil under study was described and sampled using standard soil survey procedures as outlined by FAO, and served as a pedologic window for Gleyic Fluvisol (Calcaric, Humic), according to the FAO System, or Fluventic Haploxerept, according to the Soil Taxonomy System. This soil, developed on alluvial materials of Holocene age related to the Gigüela river (either carbonatic or gypsiferous) has, in addition to obvious hydromorphic features (that reduce its use), high organic matter content (5.5% in the Ap horizon) and moderate salt content (between 1.14 and 2.39 dS/m). Other properties are common to most vineyard soils in Castilla-La Mancha, such as alkaline reactivity (pH between 7.6 and 8.2); calcium and magnesium as the dominant cations followed by sodium and potassium; finally, some deficiency in N (0.11%) and P (12.3 mg/kg). The most restricting soil factors for vineyard growth of this soil type were waterlogging, which can affect vine roots, and the appearance of certain salinity problems. The final conclusion of this study was that the use of the studied soil type for vineyard cultivation could be recommended to farmers only in the case of improving soil properties—for example, draining the river level.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.



Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.



Weed Science ◽  
1997 ◽  
Vol 45 (4) ◽  
pp. 564-567 ◽  
Author(s):  
Glen P. Murphy ◽  
David R. Shaw

Research was conducted in 1994 and 1995 to evaluate the field mobility of flumetsulam in three soils of varied texture and organic matter content but constant pH (pH = 6.0 ± 0.1). Flumetsulam was monitored to a depth of 122 cm at 28, 56, and 84 days after treatment (DAT). Flumetsulam concentrations were determined by cotton bioassay, with separate standard curves for various soil–depth combinations. Following a preemergence application of flumetsulam at 224 g ai ha−1, the herbicide was primarily limited to the upper 8 cm of soil, regardless of soil type, year, or DAT. Exceptions to this typically occurred following substantial rainfall amounts early in the season. Beyond 28 DAT, no significant concentrations of flumetsulam were detected below 15 cm. Results from this research suggest that leaching is not a significant route of flumetsulam dissipation in the field.



2019 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
J. W. B. Lopes ◽  
F. B. Lopes ◽  
E. M. de Andrade ◽  
L. C. G. Chaves ◽  
M. G. R. Carneiro

Understanding the spectral behaviour of water is of the greatest importance to the quality management of water resources. Continuous monitoring by remote sensing is therefore essential for administrators seeking the efficient management of its many uses. The aim of this research was to characterise the spectral response of water submitted to different concentrations of sediments of varying textural properties, organic matter and salts, and to identify the implications of these characteristics using simplified modelling. The experiment was conducted at the Radiometry Laboratory of the Department of Agricultural Engineering of the Federal University of Cear&aacute;, Brazil. The soils used in the research came from two areas of irrigated agriculture in Cear&aacute;, one in Morada Nova and the other in Pentecoste. Both soils were classified as Fluvic Neosols; the first saline and the second saline-sodic, and presented significant differences in granulometric composition and organic matter content. From the results, it can be concluded that: (i) sediments added at different concentrations cause an increase and deformation of the reflectance curves, and that maximum spectral partitioning occurs at two reflectance peaks; (ii) derivative analysis favours the identification of wavelengths that best differentiate sediment concentration, allowing more-efficient modelling of the process; (iii) the characteristics of texture, organic matter and salt content have little effect on estimating suspended-sediment concentration in the water, making multiple linear regression modelling a viable option for this purpose.



2021 ◽  
Vol 1 (42) ◽  
pp. 109-115
Author(s):  
Binh Phan Khanh Huynh ◽  
Tho Van Nguyen ◽  
Vien My Tran

This study aimed to use charcoal derived from the bamboo and melaleuca produced by traditional kiln applied to sandy soil growing mustard green (Brassica juncea L.). The charcoals were applied at three ratio (1%,2%, and 3%, which correspond to 10, 20, and 30 g charcoal/kg soil in pots) and the control treatment without charcoal. Soil properties were investigated including bulk density, pH, electrical conductivity (EC), cation exchange capacity (CEC), organic matter content, total nitrogen, and total phosphorous. The results showed that bulk density decreased in charcoal-treated soils. pH and EC were in the suitable range for plants.Nutrients and CEC of the soil in the charcoal treatment were significantly higher compared with the control (CEC increase 6.8% to 16%; TC increase 80% to 115%; TN increase 37.5 to 75%). Green mustard growing on charcoalamended soil had greater height (higher 3% to 21%), bigger leaves, and higher yield (increase18% to 81%) than those of plants groomed in the control treatment. This study showed the potential of using charcoal as supplying nutrient to the poor soil. Moreover, the abundant of raw material and easy to produce, it is suitable for applying in the Mekong Delta, Viet Nam, and other countries with similar conditions and infrastructure. 



Author(s):  
Progress Oghenerume ◽  
Samuel Eduok ◽  
Basil Ita ◽  
Ofonime John ◽  
Inemesit Bassey

We evaluated the effect of 4000 mg zinc oxide (ZnO, 99%, 30 nm) nanoparticle on the physicochemical and microbiological properties of organic manure amended ultisol and loam soil cultivated with Arachis hypogaea using standard methods. The results indicate varying effects on the physicochemical properties in relation to the soil type. The pH of the control ultisol at 7.85 ± 0.17 and 8.3 ± 0.12 in the amended ultisol whereas, the control loam was 7.15 ± 0.17 and 7.41 ± 0.11 in the amended soil indicating 1.06- and 1.04-times higher difference than the controls respectively.  Phosphorus concentration at 57.82 ± 0.54%, 50.81 ± 0.22% and 55.97 ± 0.04%, 59.97 ± 0.02% was 1.14 times lower in the ZnO amended ultisol and 1.07 times higher in amended loam soil compared to the respective controls. The organic matter content in the control and amended ultisol was 2.28 ± 0.32% and 0.91 ± 0.02%, 3.68 ± 0.36% and 0.36 ± 0.02% in the control and amended loam soil. The concentration of nitrate in the control ultisol was 0.05 ± 0.01% and 0.03 ± 0.01% in the amended soil. The nitrate in the control loam soil was 0.08 ± 0.01% relative to 0.02 ± 0.01% in the treated soil and these differences were significant at p = 0.05. The concentration of nutritive salts was reduced and in contrast iron, copper, exchangeable acids, exchange capacity, clay and silt increased in the amended soils. Further to this, heterotrophic ammonia and nitrate-oxidizing bacterial population were inhibited in the amended soils and denitrifying organisms were stimulated. The organisms were members of the genera Pseudomonas, Xanthobacter, Enterobacter, Bacillus, Lactobacillus, Citrobacter, Nitrosomonas, Agromyces and Rhizobium. ZnO nanoparticles altered the soil physicochemical properties which exacerbated the negative effect on microbial abundance and varied with the soil type.



2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.



2009 ◽  
Vol 6 (3) ◽  
pp. 245 ◽  
Author(s):  
Achouak El Arfaoui ◽  
Stéphanie Sayen ◽  
Eric Marceau ◽  
Lorenzo Stievano ◽  
Emmanuel Guillon ◽  
...  

Environmental context. The wide use of pesticides for pest and weed control contributes to their presence in underground and surface waters, which has led to a continuously growing interest in their environmental fate. Soils play a key role in the transfer of these compounds from the sprayer to the water as a result of their capacity to retain pesticides depending on the soil components. The knowledge of soil composition should enable one to predict pesticide behaviour in the environment. Abstract. Eight calcareous soils of Champagne vineyards (France) were studied to investigate the adsorption of the herbicide terbumeton (TER). A preliminary characterisation of the soil samples using X-ray diffraction (XRD), elemental and textural analyses, revealed a wide range of soil properties for the selected samples. The adsorption isotherms of TER were plotted for all samples. The determination of soil properties, which significantly correlated with the Kd distribution coefficient, allowed identification of organic matter and CaCO3 as the two main soil components that govern the retention of the herbicide. Organic matter was the predominant phase involved in the retention but its role was limited by the presence of calcite. Finally, the ratio of CaCO3 content to organic matter content was proposed as a useful parameter to predict the adsorption of terbumeton in chalky soils. The evolution of Kd as a function of this ratio was successfully described using an empirical model.



Weed Science ◽  
1983 ◽  
Vol 31 (3) ◽  
pp. 368-372 ◽  
Author(s):  
Josef Kozak ◽  
Jerome B. Weber

Adsorption of five phenylurea herbicides, metobromuron [3-(p-bromophenyl)-1-methoxy-1-methylurea], monolinuron [3-(p-chlorophenyl)-1-methoxyl-1-methylurea], linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea], chlorbromuron [3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea], and CGA-15646 [3-(3-chloro-4-methylphenyl)-1,1-dimethylurea] by eight selected soils of Czechoslovakia were studied. Constants from Freundlich and Langmuir equations were calculated and correlated with the major soil properties. Freundlich K values ranged from 1.84 to 128, and the Freundlich equation was better fitted to the adsorption isotherms than was the Langmuir equation. Soil organic-matter content was the most important factor influencing the range of adsorption.



Soil Research ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 11 ◽  
Author(s):  
Melinda R. S. Moata ◽  
Ashlea L. Doolette ◽  
Ronald J. Smernik ◽  
Ann M. McNeill ◽  
Lynne M. Macdonald

Organic phosphorus (P) plays an important role in the soil P cycle. It is present in various chemical forms, the relative amounts of which vary among soils, due to factors including climate, land use, and soil type. Few studies have investigated co-variation between P types or stoichiometric correlation with the key elemental components of organic matter– carbon (C) and nitrogen (N), both of which may influence P pool structure and dynamics in agricultural soils. In this study we determined the organic P speciation of twenty Australian Red Chromosols soils, a soil type widely used for cropping in Australia. Eight different chemical forms of P were quantified by 31P NMR spectroscopy, with a large majority (>90%) in all soils identified as orthophosphate and humic P. The strongest correlations (r2 = 0.77–0.85, P < 0.001) between P types were found among minor components: (i) between two inositol hexakisphosphate isomers (myo and scyllo) and (ii) between phospholipids and RNA (both detected as their alkaline hydrolysis products). Total soil C and N were correlated with phospholipid and RNA P, but not the most abundant P forms of orthophosphate and humic P. This suggests an influence of organic matter content on the organic P pool consisting of phospholipid and RNA, but not on inositol P or the largest organic P pool in these soils – humic P.



Sign in / Sign up

Export Citation Format

Share Document