scholarly journals Utilization of Waste Glass Powder in Cement Mortar

2021 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Džigita Nagrockienė ◽  
Kęstutis Barkauskas

Every year, millions of tons of waste glass are generated all over the world and disposed in landfills. Utilization of this waste by substituting a certain share of cement in cement mortars can contribute to the reduction of environmental pollution in two aspects: the utilization of waste and the reduction of the cement content in cement-based mortars. The cement industry is responsible for approximately 6% of global CO2 emissions. Seven different mortar mixes, containing between 0% and 30% of waste glass powder added by weight of cement, were analyzed. The following physical and mechanical properties of the mortar mixes were measured: compressive strength, flexural strength, and density. The test results revealed that waste glass powder can be used in small amounts in cement-based mortars to reduce the amount of cement and to utilize waste glass. A higher performance, modified cement-based mortar can be produced for civil engineering applications by replacing 5% with waste glass powder. The linear regression equations obtained illustrate the relationships between the density and compressive strength, and between density and flexural strength at 28 days.

2019 ◽  
Vol 22 (3) ◽  
pp. 208-212
Author(s):  
Sheelan M. Hama ◽  
Alhareth M. Abdulghafor ◽  
Mohammed Tarrad Nawar

In this work, waste glass powder from broken windows and plastic fibers from waste polyethylene terephthalate bottles are utilized to produce an economical self-compact concrete. Fresh properties (slump flow diameter, slump Flow T50, V. Funnel, L–Box), mechanical properties (Compressive strength and Flexural strength) and impact resistance of self-compact concrete are investigated. 15% waste glass powder as a partial replacement of cement with five percentages of polyethylene terephthalate plastic waste were adopted: 0% (reference), 0.5%, 0.75%, 1%, 1.25% and 1.5% by volume. It seems that the flow ability of self-compact concrete decreases with the increasing of the amount of plastic fibers. The compressive strength was increased slightly with plastic fiber content up to (0.75%), about 4.6% For more than (0.75%) plastic fiber. The compressive strength began to decrease about 15.2%. The results showed an improvement in flexural strength and an impact on the resistance in all tested specimens’ content of the plastic fibers, especially at (1.5%) fibers.


2021 ◽  
Vol 894 ◽  
pp. 85-93
Author(s):  
Tanikan Thongchai ◽  
Krisana Poolsawat

This research mainly focused on the properties of decorative white cement tiles which made from waste glass and white cement. The ratio of waste glass powder and white cement were studied at 10 : 90, 15 : 85, 20 : 80, 30 : 70, 40 : 60, 50 : 50, 60 : 40 and 70 : 30 by using water content at 30 %wt. All components were mixed and cast into the mould. Decorative white cement tiles were curing at 14, 21 and 28 days. In order to characterize physical and mechanical properties, all tiles were measured density, water absorption and compressive strength. According to the results, it can be obviously seen that density increased and water absorption decreased with increasing waste glass powder content. The highest compressive strength of around 36.5 MPa was found at 20 %wt of waste glass powder. However, compressive strength decreased with increasing waste glass powder over 20 %wt (waste glass powder 20: white cement 80). It was found that the lowest compressive strength of around 30.58 MPa was found at 70 %wt of waste glass powder. Curing time also affected properties as it was found that increasing curing time to 28 days resulted in increasing of density and compressive strength. In order to study how long does essential oil last on decorative white cement tiles, the orange essential oil at 1, 5 and 10 %wt were added into the white cement paste by using waste glass powder : white cement at 20 : 80 with 30 %wt of water. Decorative white cement tiles were smelled by 30 people every morning for 30 days and it can be found that 10 %wt of orange essential oil last longest on the decorative white cement tiles with 22 days.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2021 ◽  
Vol 13 (7) ◽  
pp. 3979
Author(s):  
Rosa María Tremiño ◽  
Teresa Real-Herraiz ◽  
Viviana Letelier ◽  
Fernando G. Branco ◽  
José Marcos Ortega

One of the ways of lessening the CO2 emissions of cement industry consists of replacing clinkers with supplementary cementitious materials. The required service life of real construction elements is long, so it is useful to characterize the performance of these materials in the very long term. Here, the influence of incorporating waste glass powder as a supplementary cementitious material, regarding the microstructure and durability of mortars after 1500 hardening days (approximately 4 years), compared with reference mortars without additions, was studied. The percentages of clinker replacement by glass powder were 10% and 20%. The microstructure was studied using impedance spectroscopy and mercury intrusion porosimetry. Differential thermal and X-ray diffraction analyses were performed for assessing the pozzolanic activity of glass powder at the end of the time period studied. Water absorption after immersion, the steady-state diffusion coefficient, and length change were also determined. In view of the results obtained, the microstructure of mortars that incorporated waste glass powder was more refined compared with the reference specimens. The global solid fraction and pores volume were very similar for all of the studied series. The addition of waste glass powder reduced the chloride diffusion coefficient of the mortars, without worsening their behaviour regarding water absorption after immersion.


2013 ◽  
Vol 871 ◽  
pp. 171-178
Author(s):  
Qing Qiu Kong ◽  
Guo Jun Ke ◽  
Dan Wang

The effect of hydrothermal activation indifferent temperature and pressure conditions on the pozzolanic activity of waste glass powder was discussed. The waste glass powder was treated at 108°C, 0.15MPa, 116°C, 0.18MPa and 121°C, 0.2MPa for 2h in an autoclave respectively after milling to 4215cm2/g. Mortar was made with untreated and hydrothermal activated waste glass power replacement of cement at 20% respectively, then tested for compressive strength at 3, 7, 14 , 28 and 90 days. Results showed that compressive strength of cement mortar had varying degrees of decline when replacing cement with untreated waste glass powder, comparing to the control one. Decline amplitude was large at early age and small at late age. Activity of waste glass powder was significantly improved after hydrothermal treatment. Compressive strength of mortar improved as temperature and pressure elevated, obtaining optimal strength at 121°C, 0.2MPa. Compressive strength of mortar with hydrothermal activated glass powder was higher than that with untreated glass powder at all age with 20% cement replacement. Compressive strength increased 5.3% ~ 13.6% at 3 d, 6.8%~9.7% at 28 d, 9.7% ~ 17.7% at 90 d. The essence of hydrothermal activation was the corrosion of water in the glass.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2308-2314

In the present research, the feasibility of using waste glass as replacement for natural river sand was investigated. Glass wastes dumped in landfill pose environmental pollution and research on its reuse in construction industries need to be carried out . An experimental work was performed to study the slump , unit weight, compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, ultrasonic pulse velocity, dry density and chloride ion penetration test at different curing ages at 7, 14 and 28 days of concrete. Investigation on concrete properties with various % of glass powder (0%, 5%, 10%, 15% and 20% ) were done on fresh and hardened concrete. The complete stress-strain behaviour, mechanical strength and durability properties of concrete with partial replacement of natural river sand by glass powder were investigated through standard tests.The optimum glass powder content is found out by testing the specimens prepared using different grades of concrete (M20, M30, M40,M50 and M60). All the fresh concrete mixes were tested also for the workability properties by conducting slump cone tests. According to the test results, it is observed that the slump value of fresh concrete increase gradually with % of glass powder upto 40% replacements. The gradual increase in compressive strength, flexural strength and split tensile strength with the addition of waste glass powder upto 30% was observed. The addition of 40% and 50% replacements, the strength values of concrete are comparable with that of the control mix. The density and modulus of elasticity of concrete also gradually increases from 0% to 50% addition of glass powder in the concrete. The Rapid Chloride Penetration Test (RCPT) test results show that the chloride penetration rate is considerably reduced with addition of glass powder and permeability properties of concrete is enhanced upto 50% replacement levels. In order to prepare the concrete with compressive strengthThe optimum glass powder content is found to be 50% can be used as the replacement material for fine aggregates without much compromise on the strength and durability properties and to achieve economic and environmental benefits


2020 ◽  
Vol 26 (3) ◽  
pp. 84-94
Author(s):  
Adeolu Adediran ◽  
Abayomi Akinwande ◽  
Oluwatosin Balogun ◽  
Oladele Bello ◽  
Abel Barnabas ◽  
...  

Effects of elevated temperature on thermo-mechanical properties of fired ceramic products reinforced with waste glass powder (WGP) were reported. Samples were produced by the addition of WGP to clay in varied amount and oven dried samples were fired in an electric furnace which was operated 1200 oC. Compressive and flexural strength were examined at room temperature and at elevated temperatures of 100, 300, 500, 700, and 900 oC. Results showed that, compressive strength and flexural strength reduced at elevated temperatures. Thermal conductivity, diffusivity, and emissivity were higher with increasing WGP content, while thermal expansivity and specific heat capacity were lower as percentage WGP increased in the samples. Results on thermal shock resistance showed that WGP reduced shock resistance in the samples, while the cooling rate increased with the percentage addition of WGP. Impact resistance was noted to decrease in samples when fast cooled from high temperature as the rapid cooling rate was observed to increase with WGP addition in samples. It was concluded that for fired clay products incorporated with WGP, the operating temperature should not exceed 700 oC. Also, in an environment whereby cooling is done by air or/and water, an operating temperature of ≤ 300 oC was recommended.


2014 ◽  
Vol 1082 ◽  
pp. 265-269 ◽  
Author(s):  
Guo Jun Ke ◽  
Yan Chao Wang ◽  
Pin Yu Zou ◽  
Dai Nian Zeng

To study the strength of cement mortar with different particle size of waste glass powder, grinding and screening the colorless waste glasses to 38-53,53-75,75-150,150-300,300-600μm, and as supplementary cement materials replacing the cement of cement mortar at 5,10,15,20,25,30%, respectively. Meanwhile divide the experiment into two parts:containing water reducer or not and add fly ash as comparison at the same time, measuring the flexural and compressive strength of cement mortar for 28 days. It is concluded that the flexural and compressive strength of cement mortar are decreased when mix with water reducer with maintaining the dosage of water;The optimum size and amount of waste glass powder in the cement mortar keep the same whether it is mixed water reducer or not; The flexural and compressive strength for 28days of the cement mortar reach the best value and differ with the baseline group very few whether it's mixed water reducer or not.


Sign in / Sign up

Export Citation Format

Share Document