scholarly journals Climate Change Impacts on Pinus pinea L. Silvicultural System for Cone Production and Ways to Contour Those Impacts: A Review Complemented with Data from Permanent Plots

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
João A. Freire ◽  
Gonçalo C. Rodrigues ◽  
Margarida Tomé

Umbrella pine (Pinus pinea L.) cones take three years to develop. With the increasing frequency of extreme droughts, water available for trees has decreased—climate change is a reality. The cone’s survival in its first two years of development and the average cone weight during its last year of maturation is affected, thus, reducing kernel quantity and quality. Climate change has resulted in forest fires becoming an inescapable issue in forest management planning. A literature review was carried out, focusing, on one hand, the predicted climatic changes for the Mediterranean basin and, on the other hand, the umbrella pine silvicultural mechanisms at tree, stand, and landscape levels that may help to face these constraints. Finally, the Portuguese case was focused, describing the management practices that are being adopted to achieve, even when the period of cone formation and growth include dry years, one to six tons of cones per hectare per year in adult stands.

2016 ◽  
Vol 91 (6) ◽  
pp. 1019-1030 ◽  
Author(s):  
Ana Cristina Gonçalves ◽  
Anabela Afonso ◽  
Dulce G. Pereira ◽  
Anacleto Pinheiro

2011 ◽  
Vol 62 (3) ◽  
pp. 223 ◽  
Author(s):  
Allison Aldous ◽  
James Fitzsimons ◽  
Brian Richter ◽  
Leslie Bach

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.


2021 ◽  
Author(s):  
Itxaso Ruiz ◽  
María José Sanz

<p>Rural areas of the Mediterranean watersheds face great environmental challenges, where climate change impacts the water cycle, the soil, and biodiversity, which are often priority issues for adaptation. These, have been aggravated by historical land management practices trends. In this context, we propose Nature Based Solutions (NBS) in the form of Sustainable Land Management (SLM) actions at the watershed scale to achieve climate change adaptation and mitigation while promoting other ecosystem services.</p><p>SLM actions are local adaptation practices that promote sustainable rural development. Thus, we seek the combination of several actions to achieve regional (watershed scale) more integrated approaches. With this study, we aim at proving that NBS, and thus SLM, is a successful tool for alleviating climate change impacts (i.e. water scarcity, enhanced erosion, biodiversity decline) while promoting the role of land in mitigation and enhancing biodiversity in the rural Mediterranean areas.</p><p>For this, we propose a novel conceptualization of SLM actions that moves from their local application and evaluation to the regional more systemic approaches through their combination. Results show synergies in the atmosphere, biosphere, and hydrosphere, allow for the upscaling of SLM through systemic approaches and point at direct contributions to several Sustainable Development Goals.</p>


2011 ◽  
Vol 17 (3) ◽  
pp. 220 ◽  
Author(s):  
Grant W Wardell-Johnson ◽  
Gunnar Keppel ◽  
Julianne Sander

We review the threats from anthropogenic climate change to the terrestrial biodiversity of Oceania, and quantify decline in carbon stocks. Oceania’s rich terrestrial biodiversity is facing unprecedented threats through the interaction of pervasive environmental threats (deforestation and degradation; introduced and invasive species; fragmentation) and the effects of anthropogenic climate change (sea level rise; altered rainfall patterns and increased fire frequency; temperature rises and increased storm severity, extreme weather events and abrupt system changes). All nine of Oceania’s terrestrial biomes harbour ecosystems and habitat types that are highly vulnerable under climate change, posing an immense conservation challenge. Current policies and management practices are inadequate and the need for new legislation and economic mechanisms is clear, despite powerful interests committed to limiting progress. Mitigation can be achieved by increasing the effectiveness of the protected area network, by maintaining and effectively managing existing carbon stocks and biodiversity, and by reforestation to sequester atmospheric carbon. A price on carbon emissions may encourage less carbon-intensive energy use while simultaneously encouraging reforestation on long-cleared land, and reducing degradation of native forests. However, realizing these changes will require societal change, and depend on input and collaboration from multiple stakeholders to devise and engage in shared, responsible management.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Christopher Ihinegbu

AbstractThe concepts of disasters, hazards and climatic events are well established, showing disciplinary-based perspectives. Globally, efforts have been made to come to a common understanding of these concepts; however, there remains a gap in the conceptualizations of these concepts in Africa, the hub of climate change impacts. This paper identified and characterized the understanding, management practices and limitations of disasters/climate change studies in Africa. This study employed a multi-level review process that resulted in the selection of 170 peer-reviewed articles for study. Findings revealed that the majority of the studies were tied to case studies both in the southern region of Africa and the country of South Africa. Findings also revealed that the 'natural disaster' narrative, which excludes the influence of humans in triggering these events, dominated the studies. This was complemented by the dominance of single-hazard narrative and disaster/hazard management measures that promote the prediction and modeling of nature and disasters. Further, it identified limitations in disaster and hazard studies in Africa such as the lack of synthesis of case studies, lack of adaptive planning, lack of state capacities, research-policy gaps among others. It was recommended that research on climate hazards should explore multi-hazards/disasters, demand driven, give more attention to underrepresented disciplines and capture future dynamics in the employed methodologies.


Author(s):  
Tigere Chagutah

Land tenure is an important variable impacting on vulnerability to climate-related disaster. Land tenure insecurity is widespread in southern Africa and manifests itself in a number of ways that accentuate vulnerability to climate change impacts. Insecure tenure is seen to heighten vulnerability against growing demand for land for residential purposes and working space in urban areas while in the rural areas insecure tenure militates against diversified livelihoods and hinders investment in appropriate technologies and uptake of sound environmental management practices. Using the focused synthesis method, this article (1) maps the intersections between land tenure insecurity and vulnerability to climate-induced disaster in southern Africa; and (2) identifies the opportunities tenure reforms hold for vulnerability reduction in a region predicted to suffer widespread impacts from climate change. The paper contends that land tenure is a critical component of the milieu of factors – economic, social, cultural, institutional, political and even psychological – that are known to shape vulnerability and determine the environment that people live in. The study finds that land tenure reforms can help to reduce vulnerability and enhance community resilience to climate change. In this regard, the article outlines how tenure reforms can help build diverse household livelihoods, improve environmental management, particularly in the rural areas, and encourage investment in robust housing and safe neighbourhoods among the urban poor – all of which are integral to the region’s response to climate change.


Author(s):  
Cliff Zinyemba ◽  
Emma Archer ◽  
Hanna-Andrea Rother

There is potential for increased pesticide-related adverse health outcomes in the agricultural sector linked to adaptive increases in pesticide use necessitated, in part, by climate change-related increases in pest populations. To understand the role of adaptation practices in pesticide use and health risks, this study assessed Zimbabwean smallholder cotton farmers’ adaptive responses linked to their climate change perceptions. In depth interviews were conducted with 50 farmers who had been growing cotton for at least 30 years. The study identified farmers’ adaptation practices that increased their pesticide use, as well as those that presented opportunities for reducing pesticide use through non-pesticide-dependent adaptation pathways. The findings show that due to perceived climate change impacts, such as a shorter growing season, farmers were adopting a range of adaptive practices. These included changes in pest management practices, such as increasing pesticide spraying frequencies due to keeping ratoon crops, which were increasing farmers’ overall pesticide use. Such incremental adaptive practices are potentially maladaptive, as they may increase farmers’ pesticide-related health risks. Other practices, however, such as reducing cotton acreage and diversifying crops, resulting in transformational adaptation, suggest the existence of opportunities for decreasing overall pesticide use or totally eliminating pesticides from the farming system.


Sign in / Sign up

Export Citation Format

Share Document