scholarly journals On Wood–Water Interactions in the Over-Hygroscopic Moisture Range—Mechanisms, Methods, and Influence of Wood Modification

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 779 ◽  
Author(s):  
Maria Fredriksson

Wood is a hygroscopic material that absorbs and desorbs water to equilibrate to the ambient climate. Within material science, the moisture range from 0 to about 95–98% relative humidity is generally called the hygroscopic moisture range, while the exceeding moisture range is called the over-hygroscopic moisture range. For wood, the dominating mechanisms of moisture sorption are different in these two moisture ranges; in the hygroscopic range, water is primarily bound by hydrogen bonding in cell walls, and, in the over-hygroscopic range, water uptake mainly occurs via capillary condensation outside cell walls in macro voids such as cell lumina and pit chambers. Since large volumes of water can be taken up here, the moisture content in the over-hygroscopic range increases extensively in a very narrow relative humidity range. The over-hygroscopic range is particularly relevant for durability applications since fungal degradation occurs primarily in this moisture range. This review describes the mechanisms behind moisture sorption in the over-hygroscopic moisture range, methods that can be used to study the interactions between wood and water at these high humidity levels, and the current state of knowledge on interactions between modified wood and water. A lack of studies on interactions between modified wood and water in the over-hygroscopic range was identified, and the possibility of combining different methods to acquire information on amount, state, and location of water in modified wood at several well-defined high moisture states was pointed out. Since water potential is an important parameter for fungal growth, such studies could possibly give important clues concerning the mechanisms behind the increased resistance to degradation obtained by wood modification.

Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 522 ◽  
Author(s):  
Rebecka Ringman ◽  
Greeley Beck ◽  
Annica Pilgård

The effect of wood modification on wood-water interactions in modified wood is poorly understood, even though water is a critical factor in fungal wood degradation. A previous review suggested that decay resistance in modified wood is caused by a reduced wood moisture content (MC) that inhibits the diffusion of oxidative fungal metabolites. It has been reported that a MC below 23%–25% will protect wood from decay, which correlates with the weight percent gain (WPG) level seen to inhibit decay in modified wood for several different kinds of wood modifications. In this review, the focus is on the role of water in brown rot decay of chemically and thermally modified wood. The study synthesizes recent advances in the inhibition of decay and the effects of wood modification on the MC and moisture relationships in modified wood. We discuss three potential mechanisms for diffusion inhibition in modified wood: (i) nanopore blocking; (ii) capillary condensation in nanopores; and (iii) plasticization of hemicelluloses. The nanopore blocking theory works well with cell wall bulking and crosslinking modifications, but it seems less applicable to thermal modification, which may increase nanoporosity. Preventing the formation of capillary water in nanopores also explains cell wall bulking modification well. However, the possibility of increased nanoporosity in thermally modified wood and increased wood-water surface tension for 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU) modification complicate the interpretation of this theory for these modifications. Inhibition of hemicellulose plasticization fits well with diffusion prevention in acetylated, DMDHEU and thermally modified wood, but plasticity in furfurylated wood may be increased. We also point out that the different mechanisms are not mutually exclusive, and it may be the case that they all play some role to varying degrees for each modification. Furthermore, we highlight recent work which shows that brown rot fungi will eventually degrade modified wood materials, even at high treatment levels. The herein reviewed literature suggests that the modification itself may initially be degraded, followed by an increase in wood cell wall MC to a level where chemical transport is possible.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.


The cell walls of a number of marine algae, namely species of Bryopsis, Caulerpa, Udotea, Halimeda and Penicillus and of one freshwater alga, Dichotomosiphon , are examined using both chemical and physical techniques. It is shown that, with the possible exception of Bryopsis , cellulose is completely absent and that the walls contain instead β -l,3-linked xylan as the structural polysaccharide. Bryopsis contains, in addition, a glucan which is most abundant in the outer layers of the wall and which stains like cellulose. The xylan is microfibrillar but the microfibrils are more strongly adherent than they are in cellulose, and in some species appear in the electron microscope to be joined by short crossed rod-like bodies. The orientation of the microfibrils is found to vary, ranging from a net tendency to transverse orientation through complete randomness to almost perfect longitudinal alinement. The microfibrils are negatively birefringent, so that all walls seen in optical section, and all parallel arrays of microfibrils whether in face view or in section (except strictly transverse section) are negatively birefringent. With Bryopsis , the negative birefringence in face view is overcompensated by the positive birefringence of the incrusting glucan so that the true birefringence of the crystalline polysaccharide is observed only after the glucan is removed. The X-ray diagram of parallel arrays of microfibrils as found, for instance, in Penicillus dumetosus shows that the xylan chains are helically coiled, in harmony with the negative birefringence. It is deduced that the microfibrils consist of hexagonally packed, double-stranded helices. The diameter of the helices increases with increasing relative humidity, as water is taken into the lattice, from 13.7 Å in material dried over phosphorus pentoxide to a maximum of 1.54 Å at 65 % relative humidity when the xylan contains 30 % of its weight as water. The repeat distance along the helix axis ranges from 5.85 Å (dry) to 6.06 Å (wet), the length of a half turn of each helix containing three xylose residues. The incrusting substances in these walls often include a glucan which is said also to be 1,3-linked. The significance of the extensive differences between this xylan and cellulose are examined both as regards some of the physical properties of the respective cell walls and in relation to the taxonomic position of these plants.


2010 ◽  
Vol 152-153 ◽  
pp. 44-50 ◽  
Author(s):  
Gui Bao Guo ◽  
Er Ding Han ◽  
Sheng Li An

A new method based on a solution graft technique was used to prepare poly (vinylidene fluoride) grafted polystyrene sulfonated acid (PVDF-g-PSSA) proton exchange membrane. Polystyrene is grafted into PVDF modified by plain sodium silicate (Na4SiO4). There is a linear relationship between the degree of grafting and the content of Na4SiO4. Fourier transform infrared spectroscopy is used to characterize changes of the membrane's microstructures after grafting and sulfonation. The morphology of the membrane's microstructures after grafting and sulfonation is studied by scanning electrolytic microscope (SEM). The effect of plain sodium silicate (Na4SiO4) concentration and relative humidity on the conductivity of the electrolyte was investigated by the impedance at room temperature. The results show that the styrene has been grafted into PVDF. The conductivity of PVDF-g-PSSA electrolyte doped 10% plain sodium silicate (Na4SiO4) is 0.016 S/cm at room temperature. The conductivity of the electrolyte changes slightly at a relative humidity range of 20%-70%. The weightlessness of PVDF-g-PSSA electrolyte heated to 40°C was less than 2%, which indicated that water capacity was good.


1979 ◽  
Vol 42 (10) ◽  
pp. 780-783 ◽  
Author(s):  
J. D. BALDOCK ◽  
P. R. FRANK ◽  
PAUL P. GRAHAM ◽  
FRANK J. IVEY

Sixty, seventy and ninety-day-old country cured hams were used to evaluate potassium sorbate as a fungistatic agent during aging and holding for market. A 1-min spray of 5% (w/v) potassium sorbate offered the lowest effective level for inhibition of fungal growth. Mold and yeast colony counts 30 days post-treatment were significantly lower than initial numbers but protection was lost by the 60th day under conditions conducive to fungal outgrowth (21 ± 5 C and 70 ± 5% relative humidity). Greater mold inhibition was noted when a 10% potassium sorbate spray was used under identical conditions. Less than 65% relative humidity inhibited mold growth on 120-day-old ham slices held at 7 C. Mold and yeast counts tended to be lower on hams treated after 60 days of processing than on hams treated after 90 days of processing. Residual concentrations of sorbic acid required to inhibit mold growth and yield an acceptable ham after 30 days storage were within the limit approved by the Food and Drug Administration for other food products.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1985 ◽  
Author(s):  
Maryam Mesgarpour Tousi ◽  
Yujing Zhang ◽  
Shaowei Wan ◽  
Li Yu ◽  
Chong Hou ◽  
...  

In this study, we fabricated a highly flexible fiber-based capacitive humidity sensor using a scalable convergence fiber drawing approach. The sensor’s sensing layer is made of porous polyetherimide (PEI) with its porosity produced in situ during fiber drawing, whereas its electrodes are made of copper wires. The porosity induces capillary condensation starting at a low relative humidity (RH) level (here, 70%), resulting in a significant increase in the response of the sensor at RH levels ranging from 70% to 80%. The proposed humidity sensor shows a good sensitivity of 0.39 pF/% RH in the range of 70%–80% RH, a maximum hysteresis of 9.08% RH at 70% RH, a small temperature dependence, and a good stability over a 48 h period. This work demonstrates the first fiber-based humidity sensor fabricated using convergence fiber drawing.


Holzforschung ◽  
2019 ◽  
Vol 74 (1) ◽  
pp. 68-76
Author(s):  
Tiantian Yang ◽  
Erni Ma ◽  
Jinzhen Cao

AbstractDegradation of lignin occurs naturally in wood due to the influence of microorganisms or photic radiation. To improve the properties of wood with low lignin content, furfuryl alcohol (FA) at the concentration of 25% was used to modify poplar wood (Populus euramericana Cv.) after partial delignification. Moisture sorption and dimensional stability of the samples were investigated under dynamic conditions where the relative humidity (RH) was changed sinusoidally between 45% and 75% at 25°C. Both the moisture content (MC) and the tangential dimensional change varied with a sinusoidal shape similar to the RH. Hygroscopicity and hygroexpansion increased after delignification, while furfurylation led to an inverse impact by reducing MC, dimensional changes, amplitudes of MC and dimensional changes, moisture sorption coefficient (MSC), and humidity expansion coefficient (HEC). After delignification and further furfurylation, the MC and the dimensional changes were reduced by about 20%, and the maximum drop in amplitudes of MC and dimensional changes was about 30%, while the MSC and the HEC decreased by over 15%. In addition, the furfurylated wood with low lignin content exhibited lower sorption hysteresis and swelling hysteresis.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5050 ◽  
Author(s):  
Torgrim Log

Severe wooden home conflagrations have previously been linked to the combination of very dry indoor climate in inhabited buildings during winter time, resulting in rapid fire development and strong winds spreading the fire to neighboring structures. Knowledge about how ambient conditions increase the fire risk associated with dry indoor conditions is, however, lacking. In the present work, the moisture content of indoor wooden home wall panels was modeled based on ambient temperature and relative humidity recorded at meteorological stations as the climatic boundary conditions. The model comprises an air change rate based on ambient and indoor (22 °C) temperatures, indoor moisture sources and wood panel moisture sorption processes; it was tested on four selected homes in Norway during the winter of 2015/2016. The results were compared to values recorded by indoor relative humidity sensors in the homes, which ranged from naturally ventilated early 1900s homes to a modern home with balanced ventilation. The modeled indoor relative humidity levels during cold weather agreed well with recorded values to within 3% relative humidity (RH) root mean square deviation, and thus provided reliable information about expected wood panel moisture content. This information was used to assess historic single home fire risk represented by an estimated time to flashover during the studied period. Based on the modelling, it can be concluded that three days in Haugesund, Norway, in January 2016 were associated with very high conflagration risk due to dry indoor wooden materials and strong winds. In the future, the presented methodology may possibly be based on weather forecasts to predict increased conflagration risk a few days ahead. This could then enable proactive emergency responses for improved fire disaster risk management.


Sign in / Sign up

Export Citation Format

Share Document