scholarly journals Post-Fire Management Impact on Natural Forest Regeneration through Altered Microsite Conditions

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1014 ◽  
Author(s):  
Enrico Marcolin ◽  
Raffaella Marzano ◽  
Alessandro Vitali ◽  
Matteo Garbarino ◽  
Emanuele Lingua

High severity stand-replacing wildfires can deeply affect forest ecosystems whose composition includes plant species lacking fire-related traits and specific adaptations. Land managers and policymakers need to be aware of the importance of properly managing these ecosystems, adopting post-disturbance interventions designed to reach management goals, and restoring the required ecosystem services. Recent research frequently found that post-fire salvage logging negatively affects natural regeneration dynamics, thereby altering successional pathways due to a detrimental interaction with the preceding disturbance. In this study, we compared the effects of salvage logging and other post-disturbance interventions (adopting different deadwood management strategies) to test their impact on microclimatic conditions, which potentially affect tree regeneration establishment and survival. After one of the largest and most severe wildfires in the Western Alps that affected stand-replacing behavior (100% tree mortality), a mountain forest dominated by Pinus sylvestris L., three post-fire interventions were adopted (SL-Salvage Logging, logging of all snags; CR-Cut and Release, cutting snags and releasing all deadwood on the ground; NI-No Intervention, all snags left standing). The differences among interventions concerning microclimatic conditions (albedo, surface roughness, solar radiation, soil moisture, soil temperature) were analyzed at different spatial scales (site, microsite). The management interventions influenced the presence and density of safe sites for regeneration. Salvage logging contributed to the harsh post-fire microsite environment by increasing soil temperature and reducing soil moisture. The presence of deadwood, instead, played a facilitative role in ameliorating microclimatic conditions for seedlings. The CR intervention had the highest soil moisture and the lowest soil temperature, which could be crucial for seedling survival in the first post-fire years. Due to its negative impact on microclimatic conditions affecting the availability of preferential microsites for regeneration recruitment, salvage logging should not be considered as the only intervention to be applied in post-fire environments. In the absence of threats or hazards requiring specific management actions (e.g., public safety, physical hazards for facilities), in the investigated ecosystems, no intervention, leaving all deadwood on site, could result in better microclimatic conditions for seedling establishment. A preferred strategy to speed-up natural processes and further increase safe sites for regeneration could be felling standing dead trees whilst releasing deadwood (at least partially) on the ground.




2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.



1998 ◽  
Vol 78 (1) ◽  
pp. 115-126 ◽  
Author(s):  
R. L. Fleming ◽  
T. A. Black ◽  
R. S. Adams ◽  
R. J. Stathers

Post-harvest levels of soil disturbance and vegetation regrowth strongly influence microclimate conditions, and this has important implications for seedling establishment. We examined the effects of blading (scalping), soil loosening (ripping) and vegetation control (herbicide), as well as no soil disturbance, on growing season microclimates and 3-yr seedling response on two grass-dominated clearcuts at different elevations in the Southern Interior of British Columbia. Warmer soil temperatures were obtained by removing surface organic horizons. Ripping produced somewhat higher soil temperatures than scalping at the drier, lower-elevation site, but slightly reduced soil temperatures at the wetter, higher-elevation site. Near-surface air temperatures were more extreme (higher daily maximums and lower daily minimums) over the control than over exposed mineral soil. Root zone soil moisture deficits largely reflected transpiration by competing vegetation; vegetation removal was effective in improving soil moisture availability at the lower elevation site, but unnecessary from this perspective at the higher elevation site. The exposed mineral surfaces self-mulched and conserved soil moisture after an initial period of high evaporation. Ripping and scalping resulted in somewhat lower near-surface available soil water storage capacities. Seedling establishment on both clearcuts was better following treatments which removed vegetation and surface organic horizons and thus enhanced microclimatic conditions, despite reducing nutrient supply. Such treatments may, however, compromise subsequent stand development through negative impacts on site nutrition. Temporal changes in the relative importance of different physical (microclimate) and chemical (soil nutrition) properties to soil processes and plant growth need to be considered when evaluating site productivity. Key words: Microclimate, soil temperature, air temperature, soil moisture, clearcut, seedling establishment



2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.



2009 ◽  
Vol 41 (9) ◽  
pp. 1857-1865 ◽  
Author(s):  
Paul Eggleton ◽  
Kelly Inward ◽  
Joanne Smith ◽  
David T. Jones ◽  
Emma Sherlock


2018 ◽  
Vol 22 (9) ◽  
pp. 4649-4665 ◽  
Author(s):  
Anouk I. Gevaert ◽  
Ted I. E. Veldkamp ◽  
Philip J. Ward

Abstract. Drought is a natural hazard that occurs at many temporal and spatial scales and has severe environmental and socioeconomic impacts across the globe. The impacts of drought change as drought evolves from precipitation deficits to deficits in soil moisture or streamflow. Here, we quantified the time taken for drought to propagate from meteorological drought to soil moisture drought and from meteorological drought to hydrological drought. We did this by cross-correlating the Standardized Precipitation Index (SPI) against standardized indices (SIs) of soil moisture, runoff, and streamflow from an ensemble of global hydrological models (GHMs) forced by a consistent meteorological dataset. Drought propagation is strongly related to climate types, occurring at sub-seasonal timescales in tropical climates and at up to multi-annual timescales in continental and arid climates. Winter droughts are usually related to longer SPI accumulation periods than summer droughts, especially in continental and tropical savanna climates. The difference between the seasons is likely due to winter snow cover in the former and distinct wet and dry seasons in the latter. Model structure appears to play an important role in model variability, as drought propagation to soil moisture drought is slower in land surface models (LSMs) than in global hydrological models, but propagation to hydrological drought is faster in land surface models than in global hydrological models. The propagation time from SPI to hydrological drought in the models was evaluated against observed data at 127 in situ streamflow stations. On average, errors between observed and modeled drought propagation timescales are small and the model ensemble mean is preferred over the use of a single model. Nevertheless, there is ample opportunity for improvement as substantial differences in drought propagation are found at 10 % of the study sites. A better understanding and representation of drought propagation in models may help improve seasonal drought forecasting as well as constrain drought variability under future climate scenarios.





2018 ◽  
Vol 22 (10) ◽  
pp. 5341-5356 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Jana Kolassa ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Pierre Gentine

Abstract. Characterizing soil moisture at spatiotemporal scales relevant to land surface processes (i.e., of the order of 1 km) is necessary in order to quantify its role in regional feedbacks between the land surface and the atmospheric boundary layer. Moreover, several applications such as agricultural management can benefit from soil moisture information at fine spatial scales. Soil moisture estimates from current satellite missions have a reasonably good temporal revisit over the globe (2–3-day repeat time); however, their finest spatial resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite has estimated soil moisture at two different spatial scales of 36 and 9 km since April 2015. In this study, we develop a neural-network-based downscaling algorithm using SMAP observations and disaggregate soil moisture to 2.25 km spatial resolution. Our approach uses the mean monthly Normalized Differenced Vegetation Index (NDVI) as ancillary data to quantify the subpixel heterogeneity of soil moisture. Evaluation of the downscaled soil moisture estimates against in situ observations shows that their accuracy is better than or equal to the SMAP 9 km soil moisture estimates.



2014 ◽  
Vol 11 (19) ◽  
pp. 5567-5579 ◽  
Author(s):  
Y. Kim ◽  
K. Nishina ◽  
N. Chae ◽  
S. J. Park ◽  
Y. J. Yoon ◽  
...  

Abstract. The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model – a function of soil temperature, soil moisture, vegetation type, and thaw depth – to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes – 742 and 539 g CO2 m−2 period−1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17–36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1.20 Mg CO2 in 2011 within a 40 m × 40 m plot, corresponding to 86 and 80% of annual CO2 emission rates within the western Alaska tundra ecosystem, estimated from the temperature dependence of CO2 efflux. Therefore, this HB model can be readily applied to observed CO2 efflux, as it demands only four environmental factors and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.



Sign in / Sign up

Export Citation Format

Share Document