scholarly journals Development and Characterization of Simple Sequence Repeat Markers for, and Genetic Diversity Analysis of Liquidambar formosana

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 203
Author(s):  
Siyuan Chen ◽  
Mingliang Dong ◽  
Yan Zhang ◽  
Shuaizheng Qi ◽  
Xuezeng Liu ◽  
...  

Liquidambar formosana (Hamamelidaceae) is a relatively fast-growing deciduous tree of high ornamental value that is indigenous to China. However, few molecular markers are available for the species or its close relatives; this has hindered genomic and genetic studies. Here, we develop a series of transferable expressed sequence tag-simple sequence repeats (EST-SSRs) for genomic analysis of L. formosana. We downloaded the sequence of the L. formosana transcriptome from the National Center of Biotechnology Information Database and identified SSR loci in the Unigene library. We found 3284 EST-SSRs by mining 34,491 assembled unigenes. We synthesized 100 random primer pairs for validation of eight L. formosana individuals; of the 100 pairs, 32 were polymorphic. We successfully transferred 12 EST-SSR markers across three related Liquidambar species; the markers exhibited excellent cross-species transferability and will facilitate genetic studies and breeding of Liquidambar. A total of 72 clones of three Liquidambar species were uniquely divided into three main clusters; principal coordinate analysis (PCoA) supported this division. Additionally, a set of 20 SSR markers that did not exhibit nonspecific amplification were used to genotype more than 53 L. formosana trees. The mean number of alleles (Na) was 5.75 and the average polymorphism information content (PIC) was 0.578, which was higher than that of the natural L. formosana population (0.390). In other words, the genetic diversity of the plus L. formosana population increased, but excellent phenotypic features were maintained. The primers will be valuable for genomic mapping, germplasm characterization, gene tagging, and further genetic studies. Analyses of genetic diversity in L. formosana will provide a basis for efficient application of genetic materials and rational management of L. formosana breeding programs.

2016 ◽  
Vol 8 (3) ◽  
pp. 380-385 ◽  
Author(s):  
Aissam EL FINTI ◽  
Driss TALIBI ◽  
Mouhamed SIDKI ◽  
Abdelhamid E. MOUSADIK

Estimation of genetic parameters at SSR loci can be applied for assessing the differences between cultivars or populations, either for variety distinction or the management of genetic resources. In this study, 13 Opuntia ficus-indica cultivars were analyzed using 10 SSR markers selected for studying the genetic diversity among these chosen cultivars. Over the 10 SSR markers, a total of 45 reproducible bands were scored with an average of 4.5 alleles/locus, while the observed heterozygosity (Ho) values of amplified loci ranged from 0.15 (SSR1) to 0.92 (SSR2 and SSR 11). Genetic distance analysis of the 13 cultivars showed a large genetic differentiation (GST = 0.47) and high number of different groups. Most of the accessions were not found to be clustered according to their eco-geographical origin. In addition, each cultivar was characterized by its own multiallelic combination between loci. The results revealed the usefulness of SSR in understanding of genetic diversity in Moroccans Barbary fig cultivars, thus being helpful to set up rational decisions concerning the establishment of a national reference collection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haftom Brhane ◽  
Teklehaimanot Haileselassie ◽  
Kassahun Tesfaye ◽  
Cecilia Hammenhag ◽  
Rodomiro Ortiz ◽  
...  

Finger millet (Eleusine coracana (L.) Geartn.) is a self-pollinating amphidiploid crop cultivated with minimal input for food and feed, as well as a source of income for small-scale farmers. To efficiently assess its genetic diversity for conservation and use in breeding programs, polymorphic DNA markers that represent its complex tetraploid genome have to be developed and used. In this study, 13 new expressed sequence tag-derived simple sequence repeat (EST-SSR) markers were developed based on publicly available finger millet ESTs. Using 10 polymorphic SSR markers (3 genomic and 7 novel EST-derived), the genetic diversity of 55 landrace accessions and 5 cultivars of finger millet representing its major growing areas in Ethiopia was assessed. In total, 26 alleles were detected across the 10 loci, and the average observed number of alleles per locus was 5.6. The polymorphic information content (PIC) of the loci ranged from 0.045 (Elco-48) to 0.71 (UGEP-66). The level of genetic diversity did not differ much between the accessions with the mean gene diversity estimates ranging only from 0.44 (accession 216054) to 0.68 (accession 237443). Similarly, a narrow range of variation was recorded at the level of regional states ranging from 0.54 (Oromia) to 0.59 (Amhara and Tigray). Interestingly, the average gene diversity of the landrace accessions (0.57) was similar to that of the cultivars (0.58). The analysis of molecular variance (AMOVA) revealed significant genetic variation both within and among accessions. The variation among the accessions accounted for 18.8% of the total variation (FST = 0.19; P < 0.001). Similarly, significant genetic variation was obtained among the geographic regions, accounting for 6.9% of the total variation (P < 0.001). The results of the cluster, principal coordinate, and population structure analyses suggest a poor correlation between the genetic makeups of finger millet landrace populations and their geographic regions of origin, which in turn suggests strong gene flow between populations within and across geographic regions. This study contributed novel EST-SSR markers for their various applications, and those that were monomorphic should be tested in more diverse finger millet genetic resources.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259146
Author(s):  
Venugopal Vidya ◽  
Duraisamy Prasath ◽  
Mohandas Snigdha ◽  
Ramasamy Gobu ◽  
Charles Sona ◽  
...  

Ginger (Zingiber officinale Rosc.) is an economically important and valuable spice crop around the world. It is used as food, spice, condiment, and medicine. A considerable extent of genetic diversity in ginger occurs in the Western Ghats and North-Eastern India. However, genetic diversity studies at the molecular level in ginger is limited due to limited availability of genetic and genomic information. In the present study, for the first time, we have identified and validated expressed sequence tag (EST)-simple sequence repeat (SSR) markers from ginger. We obtained 16,790 EST-SSR loci from 78987 unigenes, and 4597 SSR loci in the predicted 76929 coding sequences from RNA-Seq assembled contigs of ginger through Illumina paired-end sequencing. Gene ontology results indicate that the unigenes with SSR loci participate in various biological processes such as metabolism, growth, and development in ginger. One hundred and twenty-five primer pairs were designed from unigenes and coding sequences. These primers were tested for PCR optimization, characterization, and amplification and identified 12 novel EST-SSR markers. Twelve flanking polymorphic EST-SSR primers were validated using 48 ginger genotypes representing North-Eastern India and different eco-geographical adaptations by PCR amplification and allele sizing through capillary electrophoresis. Twelve EST-SSR primers generated a total of 111 alleles with an average of 9.25 alleles per locus and allele sizes ranging between 115-189bp. This study implies that the SSR markers designed from transcriptome sequences provides ample EST-SSR resources, which are helpful for genetic diversity analysis of Zingiberaceae species and molecular verification of ginger genotypes.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Eline van Zijll de Jong ◽  
Kathryn M Guthridge ◽  
German C Spangenberg ◽  
John W Forster

Fungal endophytes of the genus Neotyphodium are common in temperate pasture grass species and confer both beneficial and deleterious agronomic characteristics to their hosts. The aim of this study was to develop molecular markers based on simple sequence repeat (SSR) loci for the identification and assessment of genetic diversity among Neotyphodium endophytes in grasses. Expressed sequence tags (ESTs) from both Neptyphodium coenophialum and Neotyphodium lolii were examined, and unique SSR loci were identified in 9.7% of the N. coenophialum sequences and 6.3% of the N. lolii sequences. A variety of SSRs were present, although perfect trinucleotide repeat arrays were the most common. Primers were designed to 50 SSR loci from N. coenophialum and 57 SSR loci from N. lolii and were evaluated using 20 Neotyphodium and Epichloë isolates. A high proportion of the N. coenophialum and N. lolii primers produced amplification products from the majority of isolates and most of these primers detected genetic variation. SSR markers from both N. coenophialum and N. lolii detected high levels of polymorphism between Neotyphodium and Epichloë species, and low levels of polymorphism within N. coenophialum and N. lolii. SSR markers may be used in appropriate combinations to discriminate between species. Comparison with amplified fragment length polymorphism (AFLP) data demonstrated that the SSR markers were informative for the assessment of genetic variation within and between endophyte species. These markers may be used to identify endophyte taxa and to evaluate intraspecific population diversity, which may be correlated with variation for endophyte-derived agronomic traits.Key words: Neotyphodium, simple sequence repeats, expressed sequence tags, amplified fragment length polymorphism, genetic diversity.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 143
Author(s):  
Lei Zhu ◽  
Huayu Zhu ◽  
Yanman Li ◽  
Yong Wang ◽  
Xiangbin Wu ◽  
...  

Simple sequence repeats (SSRs) are widely used in mapping constructions and comparative and genetic diversity analyses. Here, 103,056 SSR loci were found in Cucurbita species by in silico PCR. In general, the frequency of these SSRs decreased with the increase in the motif length, and di-nucleotide motifs were the most common type. For the same repeat types, the SSR frequency decreased sharply with the increase in the repeat number. The majority of the SSR loci were suitable for marker development (84.75% in Cucurbita moschata, 94.53% in Cucurbita maxima, and 95.09% in Cucurbita pepo). Using these markers, the cross-species transferable SSR markers between C. pepo and other Cucurbitaceae species were developed, and the complicated mosaic relationships among them were analyzed. Especially, the main syntenic relationships between C. pepo and C. moschata or C. maxima indicated that the chromosomes in the Cucurbita genomes were highly conserved during evolution. Furthermore, 66 core SSR markers were selected to measure the genetic diversity in 61 C. pepo germplasms, and they were divided into two groups by structure and unweighted pair group method with arithmetic analysis. These results will promote the utilization of SSRs in basic and applied research of Cucurbita species.


2020 ◽  
Author(s):  
Lei Zhu ◽  
Hua yu Zhu ◽  
Yan man Li ◽  
Xiang bin Wu ◽  
Jin tao Li ◽  
...  

Abstract Background The Cucurbita genus contains important economic crops in the world, while limited molecular markers have been developed in the past years. Simple sequence repeats (SSR) markers are powerful tools for the study of genetic mapping construction, genetic diversity analysis and genome wide association. The availability of pumpkin genome information has made it possible to analyze SSRs in genome wide across three Cucurbita species. Results In this paper, based on the whole genome sequences, 34,375 SSR loci were found in C. moschata, 30,577 SSR loci were found in C. maxima and 38,104 SSR loci were found in C. pepo. C. pepo has the maximum density of SSRs with an average of 145 SSR/Mb. In general, the frequency in total SSR loci decreased with the increase of the motif length, dinucleotide motifs were the most common motifs in the three species, and for the same repeat types, the SSR frequency decreased sharply with the increase of the repeat number. Most of those SSR loci were suitable for marker development (84.75% in C. moscata, 94.53% in C. maxima and 95.09% in C. pepo). Based on those markers, we compared and analyzed the cross-species SSR markers between C. pepo and other Cucurbitaceae species by silico-PCR. Using these cross-species primers, the high collinear relationships between C. pepo and the other two species were detected, respectively. Furthermore, the application of SSR markers in genetic diversity analysis was tested in C. pepo, the results showed that they were good tools to be used in genetic diversity analysis. Conclusion In this study, the genome wide SSR markers were detected from three Cucurbita species, and some of their applications were proved by comparative genomics and genetic diversity analysis. The large number of genome-wide SSR markers and crossspecies markers would promote the basic and applied studies of Cucurbita species, such as gene mapping, QTLs mapping, comparative genomics and marker-assisted breeding.


2016 ◽  
Vol 154 (7) ◽  
pp. 1254-1269 ◽  
Author(s):  
A. SINGH ◽  
H. K. DIKSHIT ◽  
D. SINGH ◽  
N. JAIN ◽  
M. ASKI ◽  
...  

SUMMARYExpressed sequence tag-simple sequence repeat (EST-SSR) markers were used to analyse genetic diversity among three Lens species. The SSR loci amplified successfully in wild species, with 94·82% transferability in Lens culinaris subsp. orientalis, 95·4% in Lens nigricans, 98·81% in L. culinaris subsp. odemensis, 94·82% in L. culinaris subsp. tomentosus and 96·55% in Lens ervoides. Ninety-nine alleles (average 3·41 alleles/locus) were detected by 29 SSR markers. Based on the unweighted pair group method with arithmetic mean cluster analysis, all the genotypes were grouped into three clusters at a similarity level of 0·30. The diversity analysis indicated no species-specific clustering of the wild and cultivated species. Wild species L. nigricans and L. culinaris subsp. odemensis, L. culinaris subsp. orientalis and L. ervoides were grouped in Cluster I, whereas the Mediterranean land races of L. culinaris subsp. culinaris and L. culinaris subsp. tomentosus formed a separate group in Cluster II A. Cluster II B comprised L. ervoides, L. culinaris subsp. orientalis and L. culinaris subsp. culinaris. Clusters II C, II D and II F included cultivated Indian lentil genotypes. Cluster II E comprised Indian and Mediterranean germplasm lines. Cluster II F included three early maturing germplasm lines, whereas Cluster III included only two germplasm lines. The functional annotation of SSR-containing unigenes revealed that a majority of genes were involved in an important transport-related function or were a component of metabolic pathways. A high level of polymorphism of EST-SSRs and their transferability to related wild species indicated that these markers could be used for molecular screening, map construction, comparative genomic studies and marker-assisted selection.


Genome ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 731-737 ◽  
Author(s):  
N A Barkley ◽  
M L Newman ◽  
M L Wang ◽  
M W Hotchkiss ◽  
G A Pederson

Polymorphic expressed sequence tag - simple sequence repeat (EST-SSR) markers derived from major cereal crops were used to assess the genetic diversity of the USDA temperate bamboo collection consisting of 92 accessions classified in 11 separate genera and 44 species. A total of 211 bands were detected with a mean number of alleles per locus of 8.440. Phylogenetic relationships were determined by calculating genetic distances between all pairwise combinations and assessing differences in character data. The resulting dendrograms (unweighted pair group method with arithmetic means (UPGMA) and parsimony) clustered the accessions into 2 main clades, which corresponded to accessions characterized morphologically as either clumping (sympodial) or running (monopodial) bamboos. The majority of the accessions clustered according to their current taxonomic classification. These markers were also beneficial in identifying contaminated and (or) misidentified plots. Overall, these transferred markers were informative in differentiating the various bamboo accessions and determining the level of genetic variation within and among species and genera.Key words: bamboo germplasm, genetic diversity, phylogeny.


Genome ◽  
2006 ◽  
Vol 49 (6) ◽  
pp. 707-715 ◽  
Author(s):  
M L Wang ◽  
J A Mosjidis ◽  
J B Morris ◽  
R E Dean ◽  
T M Jenkins ◽  
...  

The genetic diversity of the genus Crotalaria is unknown even though many species in this genus are economically valuable. We report the first study in which polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from Medicago and soybean were used to assess the genetic diversity of the Crotalaria germplasm collection. This collection consisted of 26 accessions representing 4 morphologically characterized species. Phylogenetic analysis partitioned accessions into 4 main groups generally along species lines and revealed that 2 accessions were incorrectly identified as Crotalaria juncea and Crotalaria spectabilis instead of Crotalaria retusa. Morphological re-examination confirmed that these 2 accessions were misclassified during curation or conservation and were indeed C. retusa. Some amplicons from Crotalaria were sequenced and their sequences showed a high similarity (89% sequence identity) to Medicago truncatula from which the EST-SSR primers were designed; however, the SSRs were completely deleted in Crotalaria. Highly distinguishing markers or more sequences are required to further classify accessions within C. juncea.Key words: Crotalaria germplasm, EST-SSR, genetic diversity, phylogeny.


2011 ◽  
Vol 46 (12) ◽  
pp. 1650-1656 ◽  
Author(s):  
Gabriella Santos Pereira ◽  
Lilian Padilha ◽  
Edila Vilela Resende Von Pinho ◽  
Rita de Kássia Siqueira Teixeira ◽  
Carlos Henrique Siqueira de Carvalho ◽  
...  

The objective of this work was to analyze coffee (Coffea arabica) genotypes resistant to the coffee leaf miner (Leucoptera coffeella) using microsatellite markers. Sixty-six loci were evaluated, of which 63 were obtained from the Brazilian Coffee Expressed Sequence Tag (EST) database. These loci were amplified in bulks of individuals from F5 progenies of 'Siriema' (C. arabica x C. racemosa) resistant and susceptible to the insect, in eight samples of C. racemosa, and in a F6 population of 'Siriema' with 91 individuals segregating for resistance to the leaf miner. Polymorphisms were verified for two simple sequence repeat (SSR) loci in bulks of the susceptible progenies. The two polymorphic alleles were present in around 70% of the susceptible genotypes in F5 and in approximately 90% of the susceptible individuals in F6. However, the polymorphic EST-SSR markers among populations contrasting for resistance to leaf miner were not correlated to the evaluated characteristics. SSR markers show inter- and intraspecific polymorphism in C. arabica and C. racemosa.


Sign in / Sign up

Export Citation Format

Share Document