scholarly journals Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 210 ◽  
Author(s):  
Normah Awang Besar ◽  
Herawandi Suardi ◽  
Mui-How Phua ◽  
Daniel James ◽  
Mazlin Bin Mokhtar ◽  
...  

Total aboveground carbon (TAC) and total soil carbon stock in the agroforestry system at the Balung River Plantation, Sabah, Malaysia were investigated to scientifically support the sustaining of natural forest for mitigating global warming via reducing carbon in the atmosphere. Agroforestry, monoculture, and natural tropical forests were investigated to calculate the carbon stock and sequestration based on three different combinations of oil palm and agarwood in agroforestry systems from 2014 to 2018. These combinations were oil palm (27 years) and agarwood (seven years), oil palm (20 years) and agarwood (seven years), and oil palm (17 years) and agarwood (five years). Monoculture oil palm (16 years), oil palm (six years), and natural tropical forest were set as the control. Three randomly selected plots for agroforestry and monoculture plantation were 0.25 ha (50 × 50 m), respectively, whereas for the natural tropical forest it was 0.09 ha (30 × 30 m). A nondestructive sampling method followed by the allometric equation determined the standing biomass. Organic and shrub layers collected in a square frame (1 × 1 m) were analyzed using the CHN628 series (LECO Corp., MI, USA) for carbon content. Soil bulk density of randomly selected points within the three different layers, that is, 0 to 5, 5 to 10, and 10 to 30 cm were used to determine the total ecosystem carbon (TEC) stock in each agroforestry system which was 79.13, 85.40, and 78.28 Mg C ha−1, respectively. The TEC in the monoculture oil palm was 76.44 and 60.30 Mg C ha−1, whereas natural tropical forest had the highest TEC of 287.29 Mg C ha−1. The forest stand had the highest TEC capacity as compared with the agroforestry and monoculture systems. The impact of planting systems on the TEC showed a statistically significant difference at a 95% confidence interval for the various carbon pools among the agroforestry, monoculture, and natural tropical forests. Therefore, the forest must be sustained because of its higher capacity to store carbon in mitigating global warming.

Author(s):  
Stella Nwawulu Chiemela ◽  
Florent Noulèkoun ◽  
Chinedum Jachinma Chiemela ◽  
Amanuel Zenebe ◽  
Nigussie Abadi ◽  
...  

Purpose This paper aims at providing the evidence about how carbon sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates through the adoption of appropriate cropping systems such as agroforestry. Design/methodology/approach Stratified randomly selected plots were used to collect data on tree diameter at breast height (DBH). Composite soil samples were collected from three soil depths for soil carbon analysis. Above ground biomass estimation was made using an allometric equation. The spectral signature of each plot was extracted to study the statistical relationship between carbon stock and selected vegetation indices. Findings There was a significant difference in vegetation and soil carbon stocks among the different land use/land cover types (P < 0.05). The potential carbon stock was highest in the vegetation found in sparsely cultivated land (13.13 ± 1.84 tons ha−1) and in soil in bushland (19.21 ± 3.79 tons ha−1). Carbon sequestration potential of the study area significantly increased (+127174.5 tons CO2e) as a result of conversion of intensively cultivated agricultural lands to agroforestry systems. The amount of sequestered carbon was found to be dependent on species diversity, tree density and tree size. The vegetation indices had a better correlation with soil and total carbon. Originality/value The paper has addressed an important aspect in curbing greenhouse gases in integrated land systems. The paper brings a new empirical insight of carbon sequestration potentials of agroforestry systems with a focus on drylands.


2015 ◽  
Vol 112 (43) ◽  
pp. 13267-13271 ◽  
Author(s):  
Geertje M. F. van der Heijden ◽  
Jennifer S. Powers ◽  
Stefan A. Schnitzer

Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.


2007 ◽  
Vol 4 (2) ◽  
pp. 1059-1092 ◽  
Author(s):  
S. Lehuger ◽  
B. Gabrielle ◽  
E. Larmanou ◽  
P. Laville ◽  
P. Cellier ◽  
...  

Abstract. Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHG) contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires a capacity to predict the net exchanges of these gases in an integrated manner, as related to environmental conditions and crop management. Here, we used two year-round data sets from two intensively-monitored cropping systems in northern France to test the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved maize and rapeseed crops on a loam and rendzina soils, respectively. The model was subsequently extrapolated to predict CO2 and N2O fluxes over an entire crop rotation. Indirect emissions (IE) arising from the production of agricultural inputs and from cropping operations were also added to the final GWP. One experimental site (involving a wheat-maize-barley rotation on a loamy soil) was a net source of GHG with a GWP of 350 kg CO2-C eq ha−1 yr−1, of which 75% were due to IE and 25% to direct N2O emissions. The other site (involving an oilseed rape-wheat-barley rotation on a rendzina) was a net sink of GHG for –250 kg CO2-C eq ha−1 yr−1, mainly due to a higher predicted C sequestration potential and C return from crops. Such modelling approach makes it possible to test various agronomic management scenarios, in order to design productive agro-ecosystems with low global warming impact.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1240
Author(s):  
Maria Fernanda Magioni Marçal ◽  
Zigomar Menezes de Souza ◽  
Rose Luiza Moraes Tavares ◽  
Camila Viana Vieira Farhate ◽  
Stanley Robson Medeiros Oliveira ◽  
...  

This study aims to assess the carbon stock in a pasture area and fragment of forest in natural regeneration, given the importance of agroforestry systems in mitigating gas emissions which contribute to the greenhouse effect, as well as promoting the maintenance of agricultural productivity. Our other goal was to predict the carbon stock, according to different land use systems, from physical and chemical soil variables using the Random Forest algorithm. We carried out our study at an Entisols Quartzipsamments area with a completely randomized experimental design: four treatments and six replites. The treatments consisted of the following: (i) an agroforestry system developed for livestock, (ii) an agroforestry system developed for fruit culture, (iii) a conventional pasture, and (iv) a forest fragment. Deformed and undeformed soil samples were collected in order to analyze their physical and chemical properties across two consecutive agricultural years. The response variable, carbon stock, was subjected to a boxplot analysis and all the databases were used for a predictive modeling which in turn used the Random Forest algorithm. Results led to the conclusion that the agroforestry systems developed both for fruit culture and livestock, are more efficient at stocking carbon in the soil than the pasture area and forest fragment undergoing natural regeneration. Nitrogen stock and land use systems are the most important variables to estimate carbon stock from the physical and chemical variables of soil using the Random Forest algorithm. The predictive models generated from the physical and chemical variables of soil, as well as the Random Forest algorithm, presented a high potential for predicting soil carbon stock and are sensitive to different land use systems.


2020 ◽  
Vol 47 ◽  
pp. 81-88
Author(s):  
Ute Skiba ◽  
Kristell Hergoualc’h ◽  
Julia Drewer ◽  
Ana Meijide ◽  
Alexander Knohl

2020 ◽  
Vol 116 (2) ◽  
pp. 217
Author(s):  
Ayodele Samuel OLUWATOBI ◽  
Kehinde Stephen OLORUNMAIYE ◽  
Olabisi Fatimo ADEKOLA

<p>Improper intercropping of <em>Elaeis guineensis</em> with other crops has impaired the growth and development of the oil palm due to competition for environmental resources. The study was conducted to investigate the impact of intercropping on the growth of juvenile oil palm for 2 years. The research commenced during the rainy season of 2016 at an established juvenile oil palm plantation in Ala, Akure-North Local Government of Ondo State. Four fruit vegetables were intercropped separately within the alley of the plantation at 1, 2 or 3 m away from the oil palms in a randomized complete block design. Growth parameters of the juvenile oils were assessed. Results revealed that at 16 weeks after intercropping (WAI), the intercropped oil palm recorded better growth performance with higher canopy spread, number of frond, number of leaflets and trunk height (218.20, 37.00, 87.48 and 38.17 cm) respectively, than the sole oil palms (214.67, 32.83, 72.89 and 31.67 cm) respectively. There were no significant difference in all the growth parameters examined except canopy height (<em>p</em> &lt; 0.05). Juvenile oil palm cultivated in rainforest agroecological zone of Nigeria can be intercropped with fruit vegetables without any deleterious effect when intercropped at minimum of 1 m away from the oil palms.</p>


2020 ◽  
Vol 21 (2) ◽  
Author(s):  
Romnick Baliton ◽  
LEILA LANDICHO ◽  
Rowena Esperanza Cabahug ◽  
ROSELYN F. PAELMO ◽  
Kenneth Laruan ◽  
...  

Abstract. Baliton RS, Landicho LD, Cabahug RED, Paelmo RF, Laruan KA, Rodriguez RS, Visco RG, Castillo AKA. 2020. Ecological services of agroforestry systems in selected upland farming communities in the Philippines. Biodiversitas 21: 707-717. A study was conducted in three selected upland farming communities in Nueva Vizcaya, Benguet and Quezon, Philippines to assess the ecological services of agroforestry systems. Results showed that alley cropping was the dominant agroforestry system in Nueva Vizcaya, while vegetable-based and coffee-based multistorey systems were found prevailing in Benguet and Quezon provinces. Agrobiodiversity assessment revealed that the values of Shannon-Wiener diversity index of agroforestry systems in the three study sites were considered to be low to moderate, ranging from 2.21 to 2.71. This validates that the number of individuals per species in the agroforestry landscape was not evenly distributed. The means of biomass in the three study sites, ranging from 106.22-127 tons ha-1, were higher than that of agroforestry systems (102.80 tons ha-1) in the Philippines. The agroforestry systems in Nueva Vizcaya had the largest carbon stock of 57.15 ton C ha-1, followed by Quezon 52.96 ton C ha-1 and Benguet 47.80 ton C ha-1. These results are comparable to the overall mean of carbon stock of tree plantations (59.0 ton C ha-1) and higher than that of agroforestry systems in the Philippines, i.e., 45.4 ton C ha-1. Therefore, this article argues that the different agroforestry systems provide ecological services in the upland farming communities in the Philippines.


2021 ◽  
Author(s):  
Daril Andrean Davinsa ◽  
Waskito Aji Suryo Putro ◽  
Dyah Putri Utami

Global warming is the foremost natural issue nowadays. the number of community or companies that are beginning to not consider natural standards is accelerating global warming. PT Pertamina Refinery Unit VII Kasim with a mangrove conservation area and buffer zone has a role in reducing the impact of global warming. This can be a potential for carbon stock and absorption in conservation areas. Carbon research can also be linked to world carbon trading, as a form of commitment from a country that does not have forests. This study aims to determine the results of carbon stock and absorption in the mangrove area and buffer zone. This research was conducted in July 2021 in the company's conservation area. The diversity of species mangrove with 5 results and 13 species in bufferzone areas. The carbon results obtained, that the two conservation areas have great potential in absorbing and storing carbon. The result of carbon stock in the mangrove area is 32.93 tons/ha and in the buffer zone area is 588.86 tons/ha. While the carbon absorption in the mangrove ecosystem is 8.97 tons/ha and in the buffer zone area is 160.45 tons/ha. In carbon trading, the Pertamina RU VII Program has the potential to contribute to the country as much as (1.6 billion).


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 714
Author(s):  
Mohamad Siarudin ◽  
Syed Ajijur Rahman ◽  
Yustina Artati ◽  
Yonky Indrajaya ◽  
Sari Narulita ◽  
...  

When restoring degraded landscapes, approaches capable of striking a balance between improving environmental services and enhancing human wellbeing need to be considered. Agroforestry is an important option for restoring degraded land and associated ecosystem functions. Using survey, key informant interview and rapid carbon stock appraisal (RaCSA) methods, this study was conducted in five districts in West Java province to examine potential carbon stock in agroforestry systems practiced by smallholder farmers on degraded landscapes. Six agroforestry systems with differing carbon stocks were identified: gmelina (Gmelina arborea Roxb.) + cardamom (Amomum compactum); manglid (Magnolia champaca (L.) Baill. ex Pierre) + cardamom; caddam (Neolamarckiacadamba (Roxb.) Bosser) + cardamom; caddam + elephant grass (Pennisetum purpureum Schumach.); mixed-tree + fishpond; and mixed-tree lots. Compared to other systems, mixed-tree lots had the highest carbon stock at 108.9 Mg ha−1. Carbon stock variations related to species density and diversity. Farmers from research sites said these systems also prevent soil erosion and help to restore degraded land. Farmers’ adoption of agroforestry can be enhanced by the implementation of supportive policies and measures, backed by scientific research.


2016 ◽  
Vol 5 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Amber Ajani ◽  
Zafar Iqbal Shams

Carbon sequestration by trees is one of the most cost-effective and efficient methods to remove carbon dioxide from atmosphere since trees remove and store carbon at higher rates compared to other land covers. Carbon storage by trees typically ranges from 1 to 8 MgC ha-1 yr-1.The carbon is sequestered in different parts of the trees as biomass. The measurements of biomass provide reasonably accurate estimate of the amount of carbon that was removed from lower troposphere over the years. Therefore, the present study investigates and compares the carbon stock of native Azadirachta indica and exotic Conocarpus erectus, which are extensively cultivated in the campus of the University of Karachi, Pakistan. The above-ground and below-ground biomass of 327 trees of A. indica and 253 trees of C. erectus were estimated by using non-destructive method. The average carbon content of A. indica is calculated to be 662.32 + 1144.81 Kg while that of C. erectus is 192.70 + 322.60 Kg. The independent t-test analysis showed significant difference (p < 0.001) between the means of the carbon content of both the species. The carbon contents of two different species were also correlated with bole’s diameter at breast height (DBH) and tree’s height. The analysis demonstrated greater correlation between the carbon content and the DBH of both the species compared to that with their height. The study will help to understand the carbon sequestration potential of two different types of species for planting particularly in urban area of the world.INTERNATIONAL JOURNAL OF ENVIRONMENTVolume-5, Issue-2, March-May 2016, Page: 89-97


Sign in / Sign up

Export Citation Format

Share Document