scholarly journals Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1282
Author(s):  
Zhijie Shan ◽  
Zhe Yin ◽  
Hui Yang ◽  
Changqing Zuo ◽  
Tongbin Zhu

Determination of rates of mineralization of organic nitrogen (N) into ammonium-N (NH4+-N) and nitrification of NH4+-N into nitrate-N (NO3−-N) could be used to evaluate inorganic N supply capacity, which, in turn, could guide N fertilizer application practices in crop cultivation systems. However, little information is available on the change of mineralization and nitrification in soils under fruit cultivation systems converted from forestlands in karst regions. In a 15N-tracing study, inorganic N supply capacity in forest soils and three typical fruit crop soils under long-term cultivation was investigated, in addition to factors influencing the supply, in calcareous soils in the karst regions in southwestern China. Long-term fruit crop cultivation decreased soil organic carbon (SOC), total N, and calcium concentrations, cation exchange capacity (CEC), water holding capacity (WHC), pH, and sand content, significantly, but increased clay content. Compared to that of forests, long-term fruit crop cultivation significantly decreased mineralization and nitrification rates to 0.61–1.34 mg N kg−1 d−1 and 1.95–5.07 mg N kg−1 d−1, respectively, from 2.85–6.49 mg N kg−1 d−1 and 8.17–15.5 mg N kg−1 d−1, respectively, but greatly increased the mean residence times of NH4+-N and NO3−-N. The results indicate that long-term fruit crop cultivation could decrease soil inorganic N supply capacity and turnover in karst regions. Both mineralization and nitrification rates were significantly and positively correlated with SOC and total N concentrations, CEC, and WHC, but negatively correlated with clay content, suggesting that decreased soil organic matter and increased clay content were responsible for the decline in mineralization and nitrification rates in soils under long-term cultivation of fruit crops. The results of the present study highlight the importance of rational organic fertilizer application in accelerating soil inorganic N supply and turnover under long-term cultivation of fruit crops in karst regions.

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 376
Author(s):  
Xinghua Qin ◽  
Cheng Yang ◽  
Lin Yang ◽  
Erdeng Ma ◽  
Lei Meng ◽  
...  

Evaluations of gross mineralization (MNorg) and nitrification (ONH4) can be used to evaluate the supply capacity of inorganic N, which is crucial in determining appropriate N fertilizer application. However, the relevant research for banana plantations to date is limited. In this study, natural forest and banana plantations with different cultivation ages (3, 7, 10, and 22 y) were chosen in a subtropical region, and the 15N dilution technique was used to determine the gross MNorg and ONH4 rates. The objective was to evaluate the effect of the conversion of natural forests to banana plantations on inorganic N supply capacity (MNorg + ONH4) and other relevant factors. Compared to other natural forests in tropical and subtropical regions reported on by previous studies, the natural forest in this study was characterized by a relatively low MNorg rate and a high ONH4 rate in the soil, resulting in the presence of inorganic N dominated by nitrate. Compared to the natural forest, 3 y banana cultivation increased the MNorg and ONH4 rates and inorganic N availability in the soil, but these rates were significantly reduced with prolonged banana cultivation. Furthermore, the mean residence times of ammonium and nitrate were shorter in the 3 y than in the 7, 10, and 22 y banana plantations, indicating a reduced turnover of ammonium and nitrate in soil subjected to long-term banana cultivation. In addition, the conversion of natural forest to banana plantation reduced the soil organic carbon (SOC), total N and calcium concentrations, as well as water holding capacity (WHC), cation exchangeable capacity (CEC), and pH, more obviously in soils subjected to long-term banana cultivation. The MNorg and ONH4 rates were significantly and positively related to the SOC and TN concentrations, as well as the WHC and CEC, suggesting that the decline in soil quality after long-term banana cultivation could significantly inhibit MNorg and ONH4 rates, thus reducing inorganic N supply and turnover. Increasing the amount of soil organic matter may be an effective measure for stimulating N cycling for long-term banana cultivation.


2000 ◽  
Vol 36 (2) ◽  
pp. 205-221 ◽  
Author(s):  
T. J. REGO ◽  
V. NAGESWARA RAO

In southern and central India, farmers crop Vertisols only in the post-rainy season, to avoid land management problems in the rainy season. In 1983 ICRISAT established a long-term trial seeking to intensify cropping. The trial included intercrops, sequential crops and appropriate Vertisol management technology to allow consecutive rainy-season and post-rainy season crops to be grown. Benefits provided by legumes to succeeding rainy-season sorghum (Sorghum bicolor) were analysed in relation to a non-legume system of sorghum + safflower (Carthamus tinctorius). Rainy-season sorghum grain yield production was sustained at about 2.7 t ha−1 over 12 years within a continuous sorghum–pigeonpea (Cajanus cajan) intercrop system. With a cowpea–pigeonpea intercrop system, succeeding sorghum benefitted each year by about 40 kg N ha−1 (fertilizer nitrogen (N) equivalent). Without N fertilizer application the sorghum grain yield was around 3.3 t ha−1. Legume benefits were less marked in the chickpea (Cicer arietinum)-based rotation than in the pigeonpea system, in which a 12-year build up of soil total N (about 125 μg g−1) was observed. Although sorghum benefitted from this system, pigeonpea yields declined over time due to soil-borne fungi and nematodes. Wider rotations of crops with pigeonpea may help to overcome these problems, while sustaining sorghum production.


2000 ◽  
Vol 80 (4) ◽  
pp. 849-860 ◽  
Author(s):  
D. M. Dean ◽  
B. J. Zebarth ◽  
C. G. Kowalenko ◽  
J. W. Paul ◽  
K. Chipperfield

This study examined the effects of solid poultry layer manure addition on soil N processes and on dry matter and N accumulation in red raspberry (Rubus idaeus L.). In trials conducted in two years, approximately 50% of the 400 kg total N ha−1 applied as manure was recovered as soil inorganic N 1 mo after manure application when manure was incorporated within 4 h of application. Three trials were conducted in two commercial raspberry fields: one with no history of manure use and one other with a history of heavy annual applications of poultry manure. Treatments included 55 kg N ha−1 as NH4NO3, 100 or 200 kg total N ha−1 as manure, and a control that received no manure or fertilizer N. Soil inorganic N to 60 cm depth was measured throughout the growing season. Berry yield was estimated, and dry matter and N accumulation was determined in floricanes at first berry ripening and in primocanes at the end of the growing season. Few significant effects of N fertilization were measured for any crop yield, growth or N accumulation parameter. This was attributed to the large (>150 kg N ha−1) supply of N to the crop in the unamended soil, primarily from soil N mineralization. Dry matter accumulation in the fruiting clusters was strongly correlated to estimated berry yield, and may provide a simple means for assessing relative yield within experiments. Soil nitrate measured in August after berry harvest may serve as a "report card" to assess N management in the current growing season, to refine fertilizer N management for subsequent growing seasons, and as an index of the risk of nitrate leaching over the following fall and winter in south coastal British Columbia. Key words: Nitrogen mineralization, nitrate leaching, manure N availability, Rubus idaeus


Geoderma ◽  
2021 ◽  
Vol 381 ◽  
pp. 114754 ◽  
Author(s):  
Farzaneh Garousi ◽  
Zhijie Shan ◽  
Kang Ni ◽  
Hui Yang ◽  
Jun Shan ◽  
...  

2015 ◽  
Vol 154 (4) ◽  
pp. 632-646 ◽  
Author(s):  
L. H. HUANG ◽  
Z. W. LIANG ◽  
D. L. SUAREZ ◽  
Z.C. WANG ◽  
M. M. WANG ◽  
...  

SUMMARYSaline-sodic soils are widely distributed in the western Songnen Plain of Northeast China and planting rice has been found to be an effective and feasible approach for improving saline-sodic soil and increasing food production. Assessment of the effectiveness and sustainability of this method requires monitoring of the changes in soil salinity and nutrient content. The objective of the current study was to investigate the changes of soil salinity and nitrogen (N) contents over 1, 3, 6 and 9 years of cultivation, four application rates of N (N0: no N, N1: 100 kg N/ha, N2: 200 kg N/ha and N3: 300 kg N/ha) and two irrigation water types: ground water irrigation (GWI) and river water irrigation (RWI). Salinity and N contents of soil and water samples were analysed before planting and after harvest throughout the experiments. Soil pH and electrical conductivity (EC), especially in the surface layer of 0–40 cm depth, decreased with years of cultivation with both GWI and RWI, while soil inorganic N and total N contents increased. Moreover, with increasing N application rates, soil inorganic N and total N contents increased significantly in the 0–20 cm soil layer. Increasing N application had little effect on soil pH and EC. Reclaiming and planting rice promoted desalination of the surface and formation of a fertile tillage layer in saline-sodic paddy fields. In terms of irrigation and drainage in saline-sodic paddy fields, both soil salinity and N contents increased. Soil total salinity increased annually by 34 and 12·8 kg/ha, and inorganic N contents increased annually by 9 and 13·5 kg/ha with GWI and RWI, respectively. Therefore, comprehensive agricultural practices should be adopted for improving and cropping rice in saline-sodic paddy fields.


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 535 ◽  
Author(s):  
R. L. Parfitt ◽  
G. J. Salt ◽  
S. Saggar

We conducted a 7-week laboratory incubation experiment to evaluate the effect of leaching on net C and N mineralisation in soils. The soils were collected from adjacent fields of long-term pasture and maize, where each field contained an Inceptisol and an Andisol. The concentration of clay mineral was 200 g/kg halloysite in the Inceptisol and 120 g/kg allophane in the Andisol. Half the samples were leached weekly with 0.002 M CaCl2 at a suction of 20 kPa to remove soluble products, and half were not leached. Carbon mineralisation was determined from CO2-C evolved each week. Net N mineralisation was measured for the leached samples from the NH4-N and NO3-N in the CaCl2 extracts, and for the batch of non-leached samples by extraction in 0.5 M K2SO4. Carbon and net N mineralisation were greater in the soils under pasture than in soils under maize. The proportion of total C mineralised as CO2-C, and of total N mineralised as NH4-N and NO3-N, followed the order Inceptisol-pasture > Inceptisol-maize > Andisol-pasture > Andisol-maize, suggesting that allophane and Al ions reduced net mineralisation. Dissolved organic carbon (DOC) produced during incubation, as a proportion of total C, was greatest for the Inceptisol-maize sample and least for the Andisol-pasture sample. Non-leaching resulted in the accumulation of acids and solutes, and decreased C mineralisation for the Inceptisol samples.


2011 ◽  
Vol 20 (7) ◽  
pp. 856 ◽  
Author(s):  
A. Couto-Vázquez ◽  
S. García-Marco ◽  
S. J. González-Prieto

The effects of fire and firefighting chemicals on soil properties and the soil–plant system were evaluated 5 years after treatment application. Unburnt soils were compared with burnt soils treated with water alone (BS) or with foaming agent (BS+Fo), Firesorb polymer (BS+Fi), or ammonium polyphosphate (BS+Ap). Soils (0–2 cm depth) and foliar material (Ulex micranthus, Pterospartum tridentatum, Erica umbellata and Pinus pinaster) were analysed for total C, total N, δ15N, nutrients (soil-available; plant total), pH and inorganic-N (soils) and vegetation cover and height. No long-term effects of firefighting chemicals on soil properties were found except for pH (BS+Fo > BS+Ap), inorganic-N and P (BS+Ap > other treatments). BS+Ap plants usually showed higher values of δ15N, N, P and Na, but less K. Soil coverage by Pterospartum and Ulex was higher in BS+Ap than in other treatments, whereas the opposite was observed for Erica; shrubs were always taller in BS+Ap. After 3 years of growth, the size of pine seedlings followed the order BS+Ap > unburnt soil > other treatments. Foliar N and P, scrub regeneration and growth of pines showed the long-term fertilising effect of ammonium polyphosphate, although the second highest pine mortality was found in the BS+Ap treatment. The foaming agent did not affect vegetation cover, and Firesorb had no noticeable effect on shrubs but the highest pine mortality.


2004 ◽  
Vol 84 (3) ◽  
pp. 845-854 ◽  
Author(s):  
B. J. Zebarth ◽  
Y. Leclerc ◽  
G. Moreau

This study evaluated rate and timing of N fertilization effects on the N use efficiency characteristics of rain-fed Russet Burbank potato. Trials conducted in 1999–2001 included different rates of fertili zer N (0–160 kg N ha-1 in 1999 and 0–200 kg N ha-1 in 2000 and 2001) applied either at planting according to normal grower practice, or at hilling, the latest time that granular fertilizer can practically be applied. Whole-plant dry matter and N accumulation were determined at topkill. Soil inorganic N content was measured to 30-cm depth at planting and at tuber harvest. Soil N supply (plant N accumulation plus soil inorganic N content at harvest with no fertilizer N applied) varied from 77 to 146 kg N ha-1 depending on the year. Crop N supply (soil N supply plus fertilizer N applied) was a better predictor of plant N accumulation than fertilizer N rate, and was used to remove the confounding effect of variation in soil N supply when making among-year comparisons for N use efficiency characteristics. Nitrogen uptake efficiency (NUpE; plant N accumulation/crop N supply) decreased with increasing rates of N applied at hilling N rate in 1999, which was a dry year, but was not influenced by at-hilling N rate in 2000 and 2001, or by at-planting N rate in any year. Nitrogen use efficiency (NUE; dry matter accumulation/crop N supply) and N utilization efficiency (NUtE; dry matter accumulation/plant N accumulation) decreased curvilinearly with increasing crop N supply in each year. Similar relationships between NUE and crop N supply, and between NUtE and plant N accumulation, among the 3 yr of the study suggest that these relationships are largely independent of seasonal climatic variation, and are primarily genetically controlled. Timing of N fertilization had no effect on any N use efficiency parameter, with the exception of reduced NUpE associated with split N application in 1999. This suggests that under rain-fed potato production in Atlantic Canada, timing of N fertilization has no significant effect on N use efficiency of Russet Burbank potato in years of adequate soil moisture, but NUpE may be decreased by split application of N in dry years. Key words: Solanum tuberosum, soil inorganic N, apparent fertilizer N recovery


2011 ◽  
Vol 8 (4) ◽  
pp. 8041-8065
Author(s):  
T. Dias ◽  
M. A. Martins-Loução ◽  
L. Sheppard ◽  
C. Cruz

Abstract. Nitrogen (N) is one of the nutrients most limiting to ecosystem productivity. However, N availability is increasing globally, which may affect ecosystem functions and stability. To understand the role of each ecosystem compartment in the cycling of increased N, we studied the initial response of a nutrient-poor ecosystem, a Mediterranean maquis, to increased N. N availability (dose and forms) was modified by three N additions along the year (spring, summer and middle autumn/winter). Soil inorganic N pools (nitrate in particular) strongly reflected the N additions in autumn, almost matching the total N added along the three additions. Cistus ladanifer, the dominant plant species, responded to the increased N (cover and N concentration in leaves and litter), and given that leaf shedding occurs in the summer, the importance of this N pool returning to the soil through litter decomposition on the total soil inorganic N in autumn was investigated. Data suggest that living plants and litter have a crucial role in preventing N losses from Mediterranean maquis. This is the first integrated field study on how European Mediterranean ecosystems retain increased N of different forms and doses, however longer-term studies are needed to explore the generality of this study's observations.


1997 ◽  
Vol 77 (1) ◽  
pp. 67-76 ◽  
Author(s):  
B. J. Zebarth ◽  
J. W. Paul

Spring soil nitrate and ammonium dynamics in south coastal British Columbia soils were examined with respect to the potential to develop a soil nitrate test for silage corn (Zea mays, L.). Soil nitrate and ammonium contents were measured to 90 cm depth in two soils from April to July of two growing seasons. Treatments included a control, spring application of either 300 or 600 kg total N ha−1 as liquid dairy manure, or 200 kg N ha−1 as inorganic fertilizer. Significant amounts of ammonium were present until late May following manure and until mid-June following fertilizer application, requiring simultaneous determination of both nitrate and ammonium concentrations to assess soil inorganic N contents during this period. Most of the changes in soil nitrate over time occurred in the top 30 cm, suggesting that sampling to 30 cm depth would be sufficient in most cases for a soil nitrate test in this region. Most of the increase in soil inorganic N associated with the spring application of manure occurred by 1 June. A soil nitrate test in early to mid-June when the corn is at the six leaf stage appeared to be most suitable for use in south coastal British Columbia to determine if additional fertilizer N is required. A sample taken at this time will measure soil nitrate contents just before the period of rapid corn N uptake, after most of the additional inorganic N associated with spring manure application is already present in the soil as nitrate, and after nitrification of the manure ammonium has occurred. Key words: N recovery, preplant nitrate test, pre-sidedress soil nitrate test


Sign in / Sign up

Export Citation Format

Share Document