scholarly journals Differing Responses to Cryphonectria parasitica at Two Indiana Locations

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 794
Author(s):  
Shaneka S. Lawson ◽  
Aziz Ebrahimi ◽  
James R. McKenna

Chestnut blight, a disease that has spread rampantly among American (Castanea dentata (Marsh.) Borkh.) and European chestnut (C. sativa Mill.) trees, results from infection by the fungal pathogen Cryphonectria parasitica (Murrill) M.E. Barr (C. parasitica). This fungus was introduced in the early 1900s and has almost functionally eliminated chestnut trees from the North American landscape. In 2017, we collected chestnut blight samples from two sites (Site B, (Fulton Co., IN) and Site C (Marshall Co., IN)). At the Fulton County planting, Site B, cankers had formed, healed over, and the trees were healthy. However, at the second site in Marshall County, (Site C), cankers continued to propagate until all of the chestnut trees had died back to the ground. Research evidence worldwide has indicated that these visual clues likely result from the presence of a hypovirus. Upon closer inspection and the subsequent isolation and reproduction of spores, no hypovirus has been identified from either site. Here, we present a curious coincidence where one site has completely succumbed to the disease, while the other has been able to spring back to health.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lea Stauber ◽  
Thomas Badet ◽  
Alice Feurtey ◽  
Simone Prospero ◽  
Daniel Croll

Invasive microbial species constitute a major threat to biodiversity, agricultural production and human health. Invasions are often dominated by one or a small number of genotypes, yet the underlying factors driving invasions are poorly understood. The chestnut blight fungus Cryphonectria parasitica first decimated the North American chestnut, and a more recent outbreak threatens European chestnut stands. To unravel the chestnut blight invasion of southeastern Europe, we sequenced 230 genomes of predominantly European strains. Genotypes outside of the invasion zone showed high levels of diversity with evidence for frequent and ongoing recombination. The invasive lineage emerged from the highly diverse European genotype pool rather than a secondary introduction from Asia or North America. The expansion across southeastern Europe was mostly clonal and is dominated by a single mating type, suggesting a fitness advantage of asexual reproduction. Our findings show how an intermediary, highly diverse bridgehead population gave rise to an invasive, largely clonally expanding pathogen.


2002 ◽  
Vol 8 (2) ◽  
Author(s):  
L. Radócz ◽  
I. J. Holb

The chestnut blight fungus Cryphonectria parasitica (Murrill) Barr [syn.: Endothia parasitica (Murr) Anderson] caused almost total destruction of the American chestnut (Castanea dentata) and widely spread on European chestnut (Castanea saliva) in many European countries. In Hungary, because this fungus threatens most of the Hungarian chestnut stands, great efforts have been made to delay its spread. Biological control with Hungarian hypovirulent strains of the pathogen seems to be an effective method for saving the affected chestnut trees. Until 1998 the fungus was detected on Castanea saliva only, then on some trees of young Quercus petrea in mixed chestnut forests, which also showed the typical symptoms of blight (Kőszeg and Zengővárkony). Although blight symptoms are not so serious in Quercus spp. than in Castanea spp., it seems that C. parasitica threatens the young Quercus spp. in Hungary, mainly in heavily infected chestnut forests. This is the first report of C. parasitica cankers on oak in Hungary.


2000 ◽  
Vol 24 (4) ◽  
pp. 196-201 ◽  
Author(s):  
Seth J. Diamond ◽  
Robert H. Giles ◽  
Roy L. Kirkpatrick ◽  
Gary J. Griffin

Abstract We estimated hard mast production of a Southern Appalachian forest for two 10 yr intervals: one before and one, 35 yr after, the chestnut blight fungus (Cryphonectria parasitica) (Murr.) Barr, had killed all mature chestnut trees. The basal area of hard mast-producing trees in the postblight forest was 28% less than in the preblight forest. The estimate of hard mast output was 34% less after the chestnut blight. Postblight production was less than preblight production for 8 of 10 yr. During 5 of these years, postblight production was only 5-27% of preblight production. Annual preblight mast production was relatively stable, whereas annual postblight production fluctuated substantially. Our findings suggest that the loss of mature chestnuts (Castanea dentata) markedly reduced the Southern Appalachian forest's carrying capacity for certain wildlife species. South. J. Appl. For 24(4):196-201.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Lea Stauber ◽  
Simone Prospero ◽  
Daniel Croll

ABSTRACT Emerging fungal pathogens are a threat to forest and agroecosystems, as well as animal and human health. How pathogens evolve from nonpathogenic ancestors is still poorly understood, making the prediction of future outbreaks challenging. Most pathogens have evolved lifestyle adaptations, which were enabled by specific changes in the gene content of the species. Hence, understanding transitions in the functions encoded by genomes gives valuable insight into the evolution of pathogenicity. Here, we studied lifestyle evolution in the genus Cryphonectria, including the prominent invasive pathogen Cryphonectria parasitica, the causal agent of chestnut blight on Castanea species. We assembled and compared the genomes of pathogenic and putatively nonpathogenic Cryphonectria species, as well as sister group pathogens in the family Cryphonectriaceae (Diaporthales, Ascomycetes), to investigate the evolution of genome size and gene content. We found a striking loss of genes associated with carbohydrate metabolism (CAZymes) in C. parasitica compared to other Cryphonectriaceae. Despite substantial CAZyme gene loss, experimental data suggest that C. parasitica has retained wood colonization abilities shared with other Cryphonectria species. Putative effectors substantially varied in number, cysteine content, and protein length among species. In contrast, secondary metabolite gene clusters show a high degree of conservation within the genus. Overall, our results underpin the recent lifestyle transition of C. parasitica toward a more pathogenic lifestyle. Our findings suggest that a CAZyme loss may have promoted pathogenicity of C. parasitica on Castanea species. Analyzing gene complements underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. IMPORTANCE Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1631-1641 ◽  
Author(s):  
Jared W. Westbrook ◽  
Joseph B. James ◽  
Paul H. Sisco ◽  
John Frampton ◽  
Sunny Lucas ◽  
...  

Restoration of American chestnut (Castanea dentata) depends on combining resistance to both the chestnut blight fungus (Cryphonectria parasitica) and Phytophthora cinnamomi, which causes Phytophthora root rot, in a diverse population of C. dentata. Over a 14-year period (2004 to 2017), survival and root health of American chestnut backcross seedlings after inoculation with P. cinnamomi were compared among 28 BC3, 66 BC4, and 389 BC3F3families that descended from two BC1trees (Clapper and Graves) with different Chinese chestnut grandparents. The 5% most resistant Graves BC3F3families survived P. cinnamomi infection at rates of 75 to 100% but had mean root health scores that were intermediate between resistant Chinese chestnut and susceptible American chestnut families. Within Graves BC3F3families, seedling survival was greater than survival of Graves BC3and BC4families and was not genetically correlated with chestnut blight canker severity. Only low to intermediate resistance to P. cinnamomi was detected among backcross descendants from the Clapper tree. Results suggest that major-effect resistance alleles were inherited by descendants from the Graves tree, that intercrossing backcross trees enhances progeny resistance to P. cinnamomi, and that alleles for resistance to P. cinnamomi and C. parasitica are not linked. To combine resistance to both C. parasitica and P. cinnamomi, a diverse Graves backcross population will be screened for resistance to P. cinnamomi, survivors bred with trees selected for resistance to C. parasitica, and progeny selected for resistance to both pathogens will be intercrossed.


2014 ◽  
pp. 82-85
Author(s):  
László Radócz ◽  
Gábor Görcsös ◽  
Gábor Tarcali ◽  
Gabriella Kovács ◽  
Qin Ling

The chestnut blight fungus Cryphonectria parasitica is a native pathogen in East Asia and has been introduced into North America and Europe. Historical records and population genetic studies revealed at least three major introduction events from Asia into Europe. Nowadays, chestnut blight is present in almost the entire distribution range of European chestnut, i.e. from the Iberian Peninsula to the Caucasus. The C. parasitica population in most countries has been studied in respect to the diversity of vegetative compatibility (vc) types and the occurrence of hypovirulence. The vc type diversity of the different populations varied considerably. Typically, a high diversity of vc types has been found in areas with a long history of chestnut blight and where sexual recombination between divergent genotypes commonly has occurred. On the other hand, newly established populations often showed a low diversity with only one, or a few vc types present. Hypovirulence, i.e. the occurrence of C. parasitica isolates infected by Cryphonectria hypovirus 1 has been found widespread in Europe. Natural dissemination and active biological control applications have lead to a high prevalence of the hypovirus and to the recovery of many chestnut stands. Virulent cankers became hypovirus-infected within a short time and ceased expansion. There is concern that the diversity of vegetative compatibility types could increase in Europe through sexual reproduction between C. parasitica genotypes originating from different introductions. A higher level of vegetative incompatibility would not only hamper hypovirus spread within a population but could also select for lower virulence in CHV-1 and subsequently lead to an erosion of biological control. Recent studies, however, indicate that the vc type barriers are not so restrictive than previously assumed and that so far no evidence for an erosion of biological control system in high diversity populations can be observed.


2020 ◽  
Vol 110 (7) ◽  
pp. 1280-1293
Author(s):  
Guglielmo Lione ◽  
Luana Giordano ◽  
Massimo Turina ◽  
Paolo Gonthier

This study combined phytosanitary surveys, laboratory analyses, and mathematical modeling to show how hail-induced wounds can foster the infections of the blight pathogen Cryphonectria parasitica, locally associated with extensive dieback of chestnut (Castanea sativa). Orchards and coppices located within and outside the assessed dieback area in a single location in the North West of Italy were inspected to appraise the abundance of hail-induced wounds and C. parasitica infections. The incidence of C. parasitica was significantly higher within the dieback area compared with outside (92% versus 60%; P < 0.05). Hail-induced wounds were observed on small branches and shoots of all trees sampled within the dieback area, whereas they were less abundant outside (20% of trees), suggesting either that the dieback was directly associated with the injuries caused by the hailstorms or that those injuries may have facilitated infections of C. parasitica. Isolations conducted on 359 branches and shoots showed that hail-induced wounds served as infection courts for C. parasitica and that infections depended on the size rather than on the number of hail wounds. We fitted a logistic model showing that hail-induced wounds whose perimeter was larger than 66 mm were at particular risk of C. parasitica infection. A newly designed geometrical-based model is proposed to relate hailstones size, hail wound perimeter, and the risk of infection. We established that hail-induced wounds are entry points for virulent and hypovirulent strains of C. parasitica, since 6.5% of isolates were infected by Cryphonectria hypovirus-1.


2009 ◽  
Vol 36 (No. 2) ◽  
pp. 55-60 ◽  
Author(s):  
K. Adamčíková ◽  
M. Kobza ◽  
G. Juhásová

: We studied occurrence of chestnut blight disease in the Experimental Castanetarium Horné Lefantovce, SW Slovakia. The study ran in years 2006–2007 on a set consisting of 889 chestnut trees growing in the clonal orchard on Biological Plot 105. From this number, 857 trees were found healthy without disease symptoms. The chestnut blight disease was identified on 32 of them. The infected trees were examined for presence of pycnidia and perithecia of the causal agent. In all positive cases, the observed morphological characters indicated virulency of the obtained isolates. No hypovirulent isolate was detected on the evaluated experimental plot. In total, six vegetative compatibility (vc) types were specified in the sample consisting of 31 isolates. Our vc types corresponded to the European vc types EU 2, EU 12, EU 13, EU 14, EU 17, EU 19. Two vc types – EU 2 and EU 19 – were dominant. Vc type EU 19 accounted 35.5% and EU 2 32.2% of isolates. The vc type EU 19, which was the most frequent one in the evaluated site, was detected in Slovakia for the first time.


2017 ◽  
pp. 29-32
Author(s):  
Gabriella Kovács ◽  
László Radócz

The most destructive pathogen for the European chestnut trees is the blight fungus Cryphonectria parasitica (Murr.) Barr. The biological control is the only effective possibility to apply in situ biocontrol by hypovirulent strains against compatible virulent (wild) fungus strains. The infested bark tissues can inoculate by drilling holes surrounding and putting into agar discs interwoven by the appropriate vegetative compatible group (VCG) hypovirulent fungus strains. This latest can pass those virus-like particles (VLPs) by parasexual contact (called hypha-anastomosis)which responsible to hypovirulence. A laboratory experiment was made to find the optimal times to carry out the treatments. The intensity of growth of fungal colonies were analysed on different temperatures. The growth of the fungus on low temperature were rather slow,according to our expectations. On higher temperature the colony progress were the same as on the optimal 20–25 °C. These observations and the environment determine the date of the field applications under Hungarian weather conditions. It means the optimal treatment periods can be May or end of September to middle October in Hungary.


Sign in / Sign up

Export Citation Format

Share Document