scholarly journals Multi-Model Approaches to the Spatialization of Tree Vitality Surveys: Constructing a National Tree Vitality Map

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1009
Author(s):  
Yu-Young Choi ◽  
Hye-In Chung ◽  
Chul-Hee Lim ◽  
Jun-Hee Lee ◽  
Won-Il Choi ◽  
...  

It is essential to maintain the health of forests so that they are protected against a diverse range of stressors and show improved resilience. An area-based forest health map is required for efficient forest management on a national scale however, most national forest inventories are based on in-situ observations. This study examined methodologies to establish an area-based map on tree vitality grade using field survey data, particularly that containing information on several trees at one point. The forest health monitoring dataset of the Republic of Korea was used in combination with 37 satellite-based environmental predictors. Four methods were considered: Multinomial logistic regression (MLR), random forest classification (RF), indicator kriging (IK), and multi-model ensemble (MME) approaches using species distribution models. The MLR and RF produced biased results, whereby almost all regions were classified as first grade; the spatialization results of these methods were considered inappropriate for forest management. The maps produced using the IK and MME methods improved the distinctions between the distributions of five grades compared to the previous two methodologies however, the MME method produced better results, reliably reflecting topographical and climatic characteristics. Comparisons with the vegetation condition index and bioclimate vulnerability index also emphasized the usefulness of the MME. This study is particularly relevant to the national forest managers who struggle to find the most effective forest monitoring and management strategies. Suggestions to improve spatialization of field survey data are further discussed.

2014 ◽  
Vol 3 (2) ◽  
pp. 164-176
Author(s):  
Zoltán Pödör ◽  
László Kolozs ◽  
György Solti ◽  
László Jereb

The defoliation and crown dieback data of trees are typical indicators of forest health condition. In Hungary the data are collected in the frame of the national forest monitoring program and based on Forest Protection Network from 1987. In the paper these two data lines are investigated: (i) trend analysis was performed in respect of the examined time period according to different criteria, (ii) the relationships between healthy features and basic and derived climatic variables were examined by correlation analysis. The paper gives a general overview of the Hungarian forest health condition. Detectable general trends and statistically significant relationships are defined for all examined species and for 12 groups (subsets) of species. The received general results help us to determine further directions of deeper and more detailed investigations.


2019 ◽  
Vol 12 (3) ◽  
pp. 133-166 ◽  
Author(s):  
Alexander Gradel ◽  
Gerelbaatar Sukhbaatar ◽  
Daniel Karthe ◽  
Hoduck Kang

The natural conditions, climate change and socio-economic challenges related to the transformation from a socialistic society towards a market-driven system make the implementation of sustainable land management practices in Mongolia especially complicated. Forests play an important role in land management. In addition to providing resources and ecosystem functions, Mongolian forests protect against land degradation.We conducted a literature review of the status of forest management in Mongolia and lessons learned, with special consideration to halting deforestation and degradation. We grouped our review into seven challenges relevant to developing regionally adapted forest management systems that both safeguard forest health and consider socio-economic needs. In our review, we found that current forest management in Mongolia is not always sustainable, and that some practices lack scientific grounding. An overwhelming number of sources noticed a decrease in forest area and quality during the last decades, although afforestation initiatives are reported to have increased. We found that they have had, with few exceptions, only limited success. During our review, however, we found a number of case studies that presented or proposed promising approaches to (re-)establishing and managing forests. These studies are further supported by a body of literature that examines how forest administration, and local participation can be modified to better support sustainable forestry. Based on our review, we conclude that it is necessary to integrate capacity development and forest research into holistic initiatives. A special focus should be given to the linkages between vegetation cover and the hydrological regime.


Author(s):  
Scott L. Stephens ◽  
Jamie M. Lydersen ◽  
Brandon M. Collins ◽  
Danny L. Fry ◽  
Marc D. Meyer
Keyword(s):  

2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Matieu Henry ◽  
Zaheer Iqbal ◽  
Kristofer Johnson ◽  
Mariam Akhter ◽  
Liam Costello ◽  
...  

Abstract Background National forest inventory and forest monitoring systems are more important than ever considering continued global degradation of trees and forests. These systems are especially important in a country like Bangladesh, which is characterised by a large population density, climate change vulnerability and dependence on natural resources. With the aim of supporting the Government’s actions towards sustainable forest management through reliable information, the Bangladesh Forest Inventory (BFI) was designed and implemented through three components: biophysical inventory, socio-economic survey and remote sensing-based land cover mapping. This article documents the approach undertaken by the Forest Department under the Ministry of Environment, Forests and Climate Change to establish the BFI as a multipurpose, efficient, accurate and replicable national forest assessment. The design, operationalization and some key results of the process are presented. Methods The BFI takes advantage of the latest and most well-accepted technological and methodological approaches. Importantly, it was designed through a collaborative process which drew from the experience and knowledge of multiple national and international entities. Overall, 1781 field plots were visited, 6400 households were surveyed, and a national land cover map for the year 2015 was produced. Innovative technological enhancements include a semi-automated segmentation approach for developing the wall-to-wall land cover map, an object-based national land characterisation system, consistent estimates between sample-based and mapped land cover areas, use of mobile apps for tree species identification and data collection, and use of differential global positioning system for referencing plot centres. Results Seven criteria, and multiple associated indicators, were developed for monitoring progress towards sustainable forest management goals, informing management decisions, and national and international reporting needs. A wide range of biophysical and socioeconomic data were collected, and in some cases integrated, for estimating the indicators. Conclusions The BFI is a new information source tool for helping guide Bangladesh towards a sustainable future. Reliable information on the status of tree and forest resources, as well as land use, empowers evidence-based decision making across multiple stakeholders and at different levels for protecting natural resources. The integrated socio-economic data collected provides information about the interactions between people and their tree and forest resources, and the valuation of ecosystem services. The BFI is designed to be a permanent assessment of these resources, and future data collection will enable monitoring of trends against the current baseline. However, additional institutional support as well as continuation of collaboration among national partners is crucial for sustaining the BFI process in future.


Author(s):  
Paolo Cherubini ◽  
Giovanna Battipaglia ◽  
John L. Innes

Abstract Purpose of Review Society is concerned about the long-term condition of the forests. Although a clear definition of forest health is still missing, to evaluate forest health, monitoring efforts in the past 40 years have concentrated on the assessment of tree vitality, trying to estimate tree photosynthesis rates and productivity. Used in monitoring forest decline in Central Europe since the 1980s, crown foliage transparency has been commonly believed to be the best indicator of tree condition in relation to air pollution, although annual variations appear more closely related to water stress. Although crown transparency is not a good indicator of tree photosynthesis rates, defoliation is still one of the most used indicators of tree vitality. Tree rings have been often used as indicators of past productivity. However, long-term tree growth trends are difficult to interpret because of sampling bias, and ring width patterns do not provide any information about tree physiological processes. Recent Findings In the past two decades, tree-ring stable isotopes have been used not only to reconstruct the impact of past climatic events, such as drought, but also in the study of forest decline induced by air pollution episodes, and other natural disturbances and environmental stress, such as pest outbreaks and wildfires. They have proven to be useful tools for understanding physiological processes and tree response to such stress factors. Summary Tree-ring stable isotopes integrate crown transpiration rates and photosynthesis rates and may enhance our understanding of tree vitality. They are promising indicators of tree vitality. We call for the use of tree-ring stable isotopes in future monitoring programmes.


2020 ◽  
Vol 35 (5-6) ◽  
pp. 274-285
Author(s):  
K. Tessa Hegetschweiler ◽  
Christoph Fischer ◽  
Marco Moretti ◽  
Marcel Hunziker

Britain possesses a forest area which is one of the smallest in Europe in relation to its population and land area. In the past, forests have been felled to make way for farming and to supply timber for ships, houses, fuel and metal smelting. Timber was a key to sea power, and repeatedly the availability of home timber supplies has proved crucial in time of war. The nation’s dwindling reserves of timber have been a source of anxiety since Tudor times and periodic surges of planting for timber production by private landowners took place until about 1850. Thereafter, interest faded with the advent of the iron ship, the Industrial Revolution and the availability of cheap timber imports. Govern­ ment activity was minimal until a national forest authority was formed in 1919 to create a strategic timber reserve. Since 1958 there have been frequent policy reviews to assess the changing needs of the nation for timber and the new values associated with the social and environmental benefits of forests.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 491 ◽  
Author(s):  
Matthew Russell ◽  
Stephanie Patton ◽  
David Wilson ◽  
Grant Domke ◽  
Katie Frerker

The amount of biomass stored in forest ecosystems is a result of past natural disturbances, forest management activities, and current structure and composition such as age class distributions. Although natural disturbances are projected to increase in their frequency and severity on a global scale in the future, forest management and timber harvesting decisions continue to be made at local scales, e.g., the ownership or stand level. This study simulated potential changes in natural disturbance regimes and their interaction with timber harvest goals across the Superior National Forest (SNF) in northeastern Minnesota, USA. Forest biomass stocks and stock changes were simulated for 120 years under three natural disturbance and four harvest scenarios. A volume control approach was used to estimate biomass availability across the SNF and a smaller project area within the SNF (Jeanette Project Area; JPA). Results indicate that under current harvest rates and assuming disturbances were twice that of normal levels resulted in reductions of 2.62 to 10.38% of forest biomass across the four primary forest types in the SNF and JPA, respectively. Under this scenario, total biomass stocks remained consistent after 50 years at current and 50% disturbance rates, but biomass continued to decrease under a 200%-disturbance scenario through 120 years. In comparison, scenarios that assumed both harvest and disturbance were twice that of normal levels and resulted in reductions ranging from 14.18 to 29.85% of forest biomass. These results suggest that both natural disturbances and timber harvesting should be considered to understand their impacts to future forest structure and composition. The implications from simulations like these can provide managers with strategic approaches to determine the economic and ecological outcomes associated with timber harvesting and disturbances.


Sign in / Sign up

Export Citation Format

Share Document