Explant, Medium and Plant Growth Regulator (PGR) Affect Induction and Proliferation of Callus in Abies koreana

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1388
Author(s):  
Ge Guo ◽  
Byoung-Ryong Jeong

Korean fir (Abies koreana E.H. Wilson) is a unique Pinaceae tree species endemic in Korea. In recent years, it is believed that climate change has caused many of them to die. Therefore, it has become extremely important to protect and preserve this tree species. In this study, the possibility of callus induction using different explants, media, and plant growth regulators (PGRs) was studied. After the dormancy period in May 2020, needles and stem segments that grew from the leaf buds as the explants were collected from one-year-old shoots. The explants were disinfected and subsequently transferred to culture media supplemented with different combinations of auxins and cytokinins. These explants were cultured in the dark in a culture room with a 16 h photoperiod, day/night temperature of 24/18 °C, and 80% relative humidity. After 8 weeks, significant differences were observed in the callus induction and proliferation, as affected by the explant type, basic medium, and PGR. The stem segments were more suitable as the explants for callus induction than needles were. Furthermore, fluffy calli suitable for differentiating the regeneration buds were observed on the calli induced from stem segments. The Murashige and Skoog (MS) medium was the most effective of the three media used in this study, namely MS, Douglas fir cotyledon revised (DCR), and Quoirin and Lepoivre (LP) media, with the highest callus induction ratio of stem segments being 100.0%. The highest fresh callus weight was also observed on the MS medium (819.3 mg). Moreover, the PGR combinations of α-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and 6-benzylaminopurine (6-BA) consistently exerted a positive influence on callus induction throughout this study. In addition, the advantages of these two kinds of PGR were reflected in callus proliferation. The callus proliferation ratio reached 1,147.6% as compared to the initial fresh weight, with a high concentration of 2,4-D (3.0 mg·L−1). In conclusion, the MS medium was optimal for callus induction on the stem segment explants, and 2,4-D promoted callus induction as well as an increased proliferation ratio of callus in A. koreana.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


2010 ◽  
Vol 6 ◽  
pp. 103-105 ◽  
Author(s):  
Aditi Singh ◽  
Saroj K Sah ◽  
Aunji Pradhan ◽  
Sabari Rajbahak ◽  
Niran Maharajan

In vitro study was carried out in an important medicinal plant Tinospora cordifolia (Willd.) Miers belonging to the family: Menispermaceae. Vegetative parts such as stem, leaf and nodal explants were excised from an elite in vivo grown mature plant and thereafter cultured on Murashige-Skoog (MS) medium supplemented with different hormonal concentrations for callus induction and organogenesis. Callus formation occurred from nodal segments, leaf and inter-node explants when planted on different combinations of hormones. Tinospora cordifolia showed response for in vitro shoot growth from the nodal segment. The best shoot growth was observed on MS medium supplemented with kinetin (1.5 mg/l). Similarly, the best result for root induction was obtained on MS medium supplemented with 6-benzylaminopurine (1.0 mg/l) and naphthaleneacetic acid (2.5 mg/l). Key-words: callus induction; explants; medicinal plant; MS medium; tissue culture.DOI: 10.3126/botor.v6i0.2918 Botanica Orientalis - Journal of Plant Science (2009) 6: 103-105


HortScience ◽  
2017 ◽  
Vol 52 (9) ◽  
pp. 1278-1282 ◽  
Author(s):  
Boling Liu ◽  
Hongzhou Fang ◽  
Chaorong Meng ◽  
Ming Chen ◽  
Qingdong Chai ◽  
...  

In the present study, the effect of plant growth regulators (PGRs) on callus regeneration, adventitious shoot differentiation, and root formation of Haworthia turgida Haw. was investigated. The greatest callus induction percentage (95.6%) was achieved with leaf explants inoculated on Murashige and Skoog (MS) medium with 1.0 mg·L−1 6-benzyladenine (BA) and 0.1 mg·L−1 1-naphthaleneacetic acid (NAA), and this callus induction medium supplemented with 2.5 mg·L−1 thidiazuron (TDZ) was optimal for callus proliferation. The maximum number of shoots (25.7) was obtained when the callus was cultured on MS medium supplemented with 1.0 mg·L−1 BA and 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D). The highest number of roots per shoot (6.2) and highest rooting frequency (82.0%) were obtained when adventitious shoots were inoculated on MS medium with 0.05 mg·L−1 NAA. Regenerated plantlets were transferred to a mixture of vermiculite and soil and acclimated in a greenhouse. The survival rate of the transplanted plantlets was about 91.6%. The rate of ex vitro rooting was 83.3%, indicating that this technique is effective for root induction in H. turgida. This study has established a rapid and efficient micropropagation system that can be beneficial for commercial cultivation and germplasm conservation of H. turgida.


2019 ◽  
Vol 48 (3) ◽  
pp. 633-640 ◽  
Author(s):  
Cenney Yaman ◽  
Serkan Uranbey ◽  
Hussein Abdullah Ahmed ◽  
Sabahattin Özcan ◽  
Osman Tugay ◽  
...  

Callus induction and proliferation of Alkanna orientalis var. orientalis and Alkanna sieheana containing valuable alkannin/shikonin (A/S) derivates were investigated using leaf base and stem segment explants. Stem segments and cotyledonary leaf base of both species were cultured on Murashige and Skoog medium fortified with different concentrations of BAP, Kn, NAA, IAA and IBA for callus induction and shoot regeneration. High frequency reproducible, prolific and compact calli formation was obtained from the stem segments of both species in all media tested. The frequency variations of callus induction and shoot regeneration were discussed in terms of different species, plant growth regulators and explant resources. A. orientalis and A. sieheana may be considered to be alternative plants for the A/S production in vitro.


2020 ◽  
Vol 42 ◽  
pp. e52940
Author(s):  
Simone Sacramento dos Santos Silva ◽  
Everton Hilo de Souza ◽  
Fernanda Vidigal Duarte Souza ◽  
Cristina Ferreira Nepomuceno ◽  
Maria Angélica Pereira de Carvalho Costa

Alcantarea nahoumii (Leme) J. R. Grant is a species native to the Atlantic Forest that stands out for ornamental purposes. The objective of this work was to evaluate the in vitro germination of A. nahoumii seeds and establish a micropropagation protocol for production of seedlings so as to minimize the effects of predatory extractivism and develop an in vitro conservation system. Mature seeds were disinfested, established in three culture media (MS, MS½ and MS⅓) and incubated at four temperatures (20, 25, 30 and 35ºC) in a germination chamber. In the micropropagation experiment, stem segments were introduced in MS medium supplemented with 0.5 μM of 1-naphthaleneacetic acid (NAA) and 0.0, 2.2, 4.4 and 6.6 μM of 6-benzylaminopurine (BAP). For the in vitro conservation, plantlets were established in MS or MS½ medium supplemented with 15 g L-1 or 30 g L-1 of sucrose. The plants were acclimated with commercial substrate. The highest seed germination percentages were promoted by temperature conditions of 20 and 25ºC, with MS culture medium. The highest multiplication rate of shoots was obtained from the treatment without addition of the growth regulator or when combined with 2.2 μM of BAP + 0.5 μM of NAA. The acclimation of the plants occurred with high survival rate. The species can be conserved in vitro under slow growth condition for 24 months when incubated in MS medium supplemented with 30 g L-1 of sucrose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Denis Okello ◽  
Sungyu Yang ◽  
Richard Komakech ◽  
Yuseong Chung ◽  
Endang Rahmat ◽  
...  

The medicinal plant, Aspilia africana, has been traditionally used in several African countries to treat many diseases such as tuberculosis, cough, inflammation, malaria, osteoporosis, and diabetes. In this study, we developed a protocol for in vitro propagation of A. africana using indirect shoot organogenesis from leaf and root explants of in vitro-grown seedlings and assessed the tissues at different developmental stages. The highest callus induction (91.9 ± 2.96%) from leaf explants was in the Murashige and Skoog (MS) medium augmented with 1.0 mg/L 6-Benzylaminopurine (BAP) and 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) while from root explants, the highest callus induction (92.6 ± 2.80%) was in the same plant tissue culture medium augmented with 0.5 mg/L BAP and 1.0 mg/L 2,4-D. The best shoot regeneration capacity from leaf-derived calli (i.e., 80.0 ± 6.23% regeneration percentage and 12.0 ± 6.23 shoots per callus) was obtained in medium augmented with 1.0 mg/L BAP and 0.05 mg/L α-Naphthaleneacetic acid (NAA); the best regeneration capacity for root-derived calli (i.e., 86.7 ± 6.24% shoot regeneration percentage and 14.7 ± 1.11 shoots per callus) was obtained in the MS medium augmented with 1.0 mg/L BAP, 0.05 mg/L NAA, and 0.1 mg/L Thidiazuron (TDZ). Regenerated plantlets developed a robust root system in 1/2 MS medium augmented with 0.1 mg/L NAA and had a survival rate of 93.6% at acclimatization. The in vitro regenerated stem tissue was fully differentiated, while the young leaf tissue consisted of largely unorganized and poorly differentiated cells with large intercellular airspaces typical of in vitro leaf tissues. Our study established a protocol for the indirect regeneration of A. africana and offers a basis for its domestication, large-scale multiplication, and germplasm preservation. To the best of our knowledge, this is the first study to develop an indirect regeneration protocol for A. africana and conduct anatomical assessment through the different stages of development from callus to a fully developed plantlet.


2021 ◽  
Vol 83 (4) ◽  
pp. 137-150
Author(s):  
Nurul Fairuz Diyana Bahrudin ◽  
Umar Hamzah ◽  
Wan Zuhairi Wan Yaacob

The application of biotechnology in upland rice improvement programs depends on the availability of efficient regeneration protocols.  Although protocols for shoot regeneration of upland rice are available, none has been reported for pigmented cultivars.  This study reports on a protocol for callus induction and regeneration of Tadong, a pigmented upland rice cultivar from Sabah.  For callus induction, immature embryos were cultured on media containing 2,4-Dichlorophenoxyacetic (2,4-D) at various concentrations (0 – 2.5 mg/L) and on different types of media (MS; MSB5; N6B5; N6).  To induce shoot regeneration, callus explants were cultured on MS medium supplemented with combinations of 6-Benzylaminopurine (BAP) at various concentrations (0 – 3.0 mg/L) and 1-Naphthaleneacetic acid (NAA) at 1.0 mg/L.  To induce shoot development, callus explants were pre-treated with Thidiazuron (TDZ) at various concentrations (0-1.0 mg/l) and exposed to different desiccation periods (0 – 72 hours).  2,4-Dichlorophenoxyacetic at 2.5 mg/L and N6B5 medium resulted in the highest percentages of explant forming callus which were 60.3 ± 17.0 % and 58.7 ± 9.8 % respectively.   The regeneration media failed to induce shoot on callus explants, instead, green spots were formed on the surface of the callus.  The green spots were stimulated to develop into shoots when the callus explants were pre-treated with 0.5 mg/L TDZ or exposed to partial desiccation for 24 h, the percentages of explant forming shoot were 35.7 ± 4.8 % and 47.7 ± 6.8 % respectively.   Shoots developed into complete plants on hormone-free MS medium and acclimatized. 


2013 ◽  
Vol 8 (4) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Tharita Kitisripanya ◽  
Jukrapun Komaikul ◽  
Nirachara Tawinkan ◽  
Chuennapha Atsawinkowit ◽  
Waraporn Putalun

The highest dicentrine content (19.5 ± 0.3 mg/g dry weight) from callus culture of Stephania venosa was achieved from stem segments cultured on MS medium supplemented with TDZ 0.5 mg/L and NAA 1.0 mg/L. Cell suspension cultures were established from callus cultured on MS liquid medium with the same plant growth regulators. Dicentrine production from S. venosa cell suspension cultures was obtained in the range of 15–26 mg/g dry weight. Elicitation in cell suspension cultures by chitosan (50 mg/L) and salicylic acid (2 mg/L) for 6 days significantly increased dicentrine content. Our findings indicate that callus and cell suspension cultures of S. venosa can produce high levels of dicentrine as an alternative source of plant materials.


2013 ◽  
Vol 59 (3) ◽  
pp. 17-25
Author(s):  
Maria Morozowska ◽  
Maria Wesołowska ◽  
Romana Głowicka-Wołoszyn ◽  
Anna Kosińska

Abstract Primula veris L. (Primulaceae) is a well-known medicinal herb. The callus induction response of three explant types: roots, cotyledons, and hypocotyls of four-week-old cowslip seedlings were evaluated. The highest statistically different callus induction rate was 93.6% and was obtained from root explants on MS medium supplemented with 0.1 mg/l BA and 5.0 mg/l PIC. Calli also appeared on 83.3% of cotyledon explants on MS medium supplemented with 1.0 mg/l BA and 3.5 mg/l 2,4-D and on 81.0% of root explants on MS medium supplemented with 0.1 mg/l KIN and 2.0 mg/l 2,4-D. These values were not statistically different. The average time required for callus initiation was 4 to 6 weeks, however, it depended on the explants type. The most suitable condition for callus proliferation and growth was MS medium with 0.5 mg/l TDZ and 0.1 mg/l NAA, and with 1.0 mg/l BA and 2.0 mg/l or 3.5 mg/l 2,4-D. No light conditions proved to be more favourable for cowslip calli induction and growth


2008 ◽  
Vol 63 (5-6) ◽  
pp. 413-417 ◽  
Author(s):  
Winida Wongwicha ◽  
Hiroyuki Tanaka ◽  
Yukihiro Shoyama ◽  
Indree Tuvshintogtokh ◽  
Waraporn Putalun

Licorice plants, Glycyrrhiza glabra, G. uralensis, and G. inflata, were investigated for callus induction using Murashige and Skoog (MS) medium combined with auxins and cytokinins. After 4 weeks of culture, 33-100% of leaf or stem explants formed calli. Maximum of shoot induction from callus cultures was achieved by G. inflata stem explants cultured on MS medium supplemented with 1 mg/l α-naphthaleneacetic acid (NAA) and 0.5 mg/l 6-benzyladenine (BA) (67%) which also gave maximum shoot formation per explant (two shoots per explant). These results indicated that all three Glycyrrhiza species regenerated shoots from callus cultures on MS medium combined with NAA and BA or only thidiazuron (TDZ; 0.1 and 0.5 mg/l). Glycyrrhizin contents of G. uralensis calli induced using MS medium in combination with NAA and BA [(27.60 ± 8.47) μg/g DW] or TDZ alone [(36.52 ± 2.45) μg/ g DW] were higher than those found in other combinations.


Sign in / Sign up

Export Citation Format

Share Document