scholarly journals Scandinavian Forest Fire Activity Correlates with Proxies of the Baffin Bay Ice Cover

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Igor Drobyshev ◽  
Yves Bergeron ◽  
Nina Ryzhkova ◽  
Alexander Kryshen

Understanding factors driving fire activity helps reveal the degree and geographical variability in the resilience of boreal vegetation to large scale climate forces. We studied the association between sea ice cover in the Baffin Bay and the Labrador Sea and observational records of forest fires in two Nordic countries (Norway and Sweden) over 1913–2017. We found a positive correlation between ice proxies and regional fire activity records suggesting that the Arctic climate and the associated changes in North Atlantic circulation exercise an important control on the levels of fire activity in Scandinavia. Changes in the sea cover are likely correlated with the dynamic of the North Atlantic Current. These dynamics may favor the development of the drought conditions in Scandinavia through promoting persistent high-pressure systems over the Scandinavian boreal zone during the spring and summer. These periods are, in turn, associated with an increased water deficit in forest fuels, leading to a regionally increased fire hazard. The Arctic climate will likely be an important future control of the boreal fire activity in the Nordic region.

2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2021 ◽  
Author(s):  
Rebecca Scholten ◽  
Coumou Dim ◽  
Luo Fei ◽  
Sander Veraverbeke

<p>In the summer of 2020, extreme fires have raged in northeastern Siberia, many of them within the Arctic Circle burning in ecotonal larch forest and tundra ecosystems. This unprecedented increase in fire activity within the Arctic Circle has been linked to record-high temperatures measured in the region, as well as to high lightning activity.</p><p>In mid-latitudes, the pronounced and long-lasting heatwaves of the last decade have been linked to amplified Rossby waves connected with weak atmospheric circulation. These amplified waves tend to phase-lock in preferred positions and thereby lead to more persistent summer weather. Linkages between atmospheric teleconnections and boreal wildfires exist for some regions, yet the influence of wave dynamics on arctic-boreal wildfires is unknown. We explored relationships between wave dynamics, heatwaves, and the unprecedented fire activity in Siberia in 2020 to assess whether the recent surge in arctic-boreal fires in Siberia is driven by large-scale atmospheric dynamics.</p><p>We determined wave amplitudes as phase positions by applying fast Fourier transformation on weekly averaged mid- to high-latitudinal mean meridional wind velocities at the 250 mb level from ERA5 reanalysis data. Gridded percentage area burned between 2001 and 2020 was derived from the Moderate Resolution Imaging Spectrometer (MODIS) Burned Area product (MCD64A1). We then quantified the importance of Rossby wave patterns on fire activity clustered by latitude in eastern Siberia.</p>


2016 ◽  
Vol 16 (1) ◽  
pp. 239-253 ◽  
Author(s):  
I. Lehtonen ◽  
A. Venäläinen ◽  
M. Kämäräinen ◽  
H. Peltola ◽  
H. Gregow

Abstract. The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996–2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.


2016 ◽  
Author(s):  
Luca Pozzoli ◽  
Srdan Dobricic ◽  
Simone Russo ◽  
Elisabetta Vignati

Abstract. Winter warming and sea ice retreat observed in the Arctic in the last decades determine changes of large scale atmospheric circulation pattern that may impact as well the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a new statistical algorithm, based on the Maximum Likelihood Estimate approach, to determine how the changes of three large scale weather patterns (the North Atlantic Oscillation, the Scandinavian Blocking, and the El Nino-Southern Oscillation), associated with winter increasing temperatures and sea ice retreat in the Arctic, impact the transport of BC to the Arctic and its deposition. We found that the three atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the Eastern Arctic while they increase BC deposition in the Western Arctic. The increasing trend is mainly due to the more frequent occurrences of stable high pressure systems (atmospheric blocking) near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. The North Atlantic Oscillation has a smaller impact on BC deposition in the Arctic, but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The El Nino-Southern Oscillation does not influence significantly the transport and deposition of BC to the Arctic. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.


Author(s):  
R. Kwok ◽  
G. F. Cunningham

We present our estimates of the thickness and volume of the Arctic Ocean ice cover from CryoSat-2 data acquired between October 2010 and May 2014. Average ice thickness and draft differences are within 0.16 m of measurements from other sources (moorings, submarine, electromagnetic sensors, IceBridge). The choice of parameters that affect the conversion of ice freeboard to thickness is discussed. Estimates between 2011 and 2013 suggest moderate decreases in volume followed by a notable increase of more than 2500 km 3 (or 0.34 m of thickness over the basin) in 2014, which could be attributed to not only a cooler summer in 2013 but also to large-scale ice convergence just west of the Canadian Arctic Archipelago due to wind-driven onshore drift. Variability of volume and thickness in the multiyear ice zone underscores the importance of dynamics in maintaining the thickness of the Arctic ice cover. Volume estimates are compared with those from ICESat as well as the trends in ice thickness derived from submarine ice draft between 1980 and 2004. The combined ICESat and CryoSat-2 record yields reduced trends in volume loss compared with the 5 year ICESat record, which was weighted by the record-setting ice extent after the summer of 2007.


2014 ◽  
Vol 14 (24) ◽  
pp. 13571-13600 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. Sea ice is the central component and most sensitive indicator of the Arctic climate system. Both the depletion and areal decline of the Arctic sea ice cover, observed since the 1970s, have accelerated since the millennium. While the relationship of global warming to sea ice reduction is evident and underpinned statistically, it is the connecting mechanisms that are explored in detail in this review. Sea ice erodes both from the top and the bottom. Atmospheric, oceanic and sea ice processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system: the amplification is both supported by the ice depletion and, at the same time, accelerates ice reduction. Knowledge of the mechanisms of sea ice decline grew during the 1990s and deepened when the acceleration became clear in the early 2000s. Record minimum summer sea ice extents in 2002, 2005, 2007 and 2012 provide additional information on the mechanisms. This article reviews recent progress in understanding the sea ice decline. Processes are revisited from atmospheric, oceanic and sea ice perspectives. There is strong evidence that decisive atmospheric changes are the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo, and ice thickness allow for additional local atmospheric and oceanic influences and self-supporting feedbacks. Large-scale ocean influences on Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. There is little indication of a direct and decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2019 ◽  
Vol 19 (6) ◽  
pp. 3927-3937 ◽  
Author(s):  
Daniel Mewes ◽  
Christoph Jacobi

Abstract. Arctic amplification causes the meridional temperature gradient between middle and high latitudes to decrease. Through this decrease the large-scale circulation in the midlatitudes may change and therefore the meridional transport of heat and moisture increases. This in turn may increase Arctic warming even further. To investigate patterns of Arctic temperature, horizontal transports and their changes in time, we analysed ERA-Interim daily winter data of vertically integrated horizontal moist static energy transport using self-organizing maps (SOMs). Three general transport pathways have been identified: the North Atlantic pathway with transport mainly over the northern Atlantic, the North Pacific pathway with transport from the Pacific region, and the Siberian pathway with transport towards the Arctic over the eastern Siberian region. Transports that originate from the North Pacific are connected to negative temperature anomalies over the central Arctic. These North Pacific pathways have been becoming less frequent during the last decades. Patterns with origin of transport in Siberia are found to have no trend and show cold temperature anomalies north of Svalbard. It was found that transport patterns that favour transport through the North Atlantic into the central Arctic are connected to positive temperature anomalies over large regions of the Arctic. These temperature anomalies resemble the warm Arctic–cold continents pattern. Further, it could be shown that transport through the North Atlantic has been becoming more frequent during the last decades.


2016 ◽  
Vol 29 (21) ◽  
pp. 7831-7849 ◽  
Author(s):  
Hans W. Chen ◽  
Fuqing Zhang ◽  
Richard B. Alley

Abstract The significance and robustness of the link between Arctic sea ice loss and changes in midlatitude weather patterns is investigated through a series of model simulations from the Community Atmosphere Model, version 5.3, with systematically perturbed sea ice cover in the Arctic. Using a large ensemble of 10 sea ice scenarios and 550 simulations, it is found that prescribed Arctic sea ice anomalies produce statistically significant changes for certain metrics of the midlatitude circulation but not for others. Furthermore, the significant midlatitude circulation changes do not scale linearly with the sea ice anomalies and are not present in all scenarios, indicating that the remote atmospheric response to reduced Arctic sea ice can be statistically significant under certain conditions but is generally nonrobust. Shifts in the Northern Hemisphere polar jet stream and changes in the meridional extent of upper-level large-scale waves due to the sea ice perturbations are generally small and not clearly distinguished from intrinsic variability. Reduced Arctic sea ice may favor a circulation pattern that resembles the negative phase of the Arctic Oscillation and may increase the risk of cold outbreaks in eastern Asia by almost 50%, but this response is found in only half of the scenarios with negative sea ice anomalies. In eastern North America the frequency of extreme cold events decreases almost linearly with decreasing sea ice cover. This study’s finding of frequent significant anomalies without a robust linear response suggests interactions between variability and persistence in the coupled system, which may contribute to the lack of convergence among studies of Arctic influences on midlatitude circulation.


2002 ◽  
Vol 34 ◽  
pp. 447-453 ◽  
Author(s):  
Ron Kwok

AbstractThe RADARSAT geophysical processor system (RGPS) produces measurements of ice motion and estimates of ice thickness using repeat synthetic aperture radar maps of the Arctic Ocean. From the RGPS products, we compute the net deformation and advection of the winter ice cover using the motion observations, and the seasonal ice area and volume production using the estimates of ice thickness. The results from the winters of 1996/97 and 1997/98 are compared. The second winter is of particular interest because it coincides with the Surface Heat Budget of the Arctic Ocean (SHEBA) field program. The character of the deformation of the ice cover from the two years is very different. Over a domain covering a large part of the western Arctic Ocean (~2.5 × 106 km2), the net divergence of that area during the 6 months of the first winter was 2.7% and for the second winter was 49.3%. In a subregion where the SHEBA camp was located, the net divergence was almost 38% compared to a net divergence of the same subregion of ~9% in 1996/97. The resulting deformation created a much larger volume of seasonal ice than in the earlier year. The net seasonal ice-volume production is 1.6 times (0.38 m vs 0.62 m) that of the first year. In addition to the larger divergence, this part of the ice cover advected a longer distance toward the Chukchi Sea over the same time-span. The total coverage of multi-year ice remained almost identical at ~2.08 × 106 km2, or 83% of the initial area of the domain. In this paper, we compare the behavior of the ice cover over the two winters and discuss these observations in the context of large-scale ice motion and atmospheric-pressure pattern.


2020 ◽  
Author(s):  
Konstantin Nebel ◽  
Timothy Lane ◽  
Kathryn Adamson ◽  
Iestyn Barr ◽  
Willem van der Bilt ◽  
...  

<p>The Arctic region is experiencing surface air temperature increase of twice the global average. To better understand Holocene Arctic climate variability, there is the need for continuous, high-resolution palaeoclimate archives. Sediment cores from proglacial lakes can provide such climate archives, and have the potential to record past environmental change in detail.       </p><p>Vatnsdalur, a valley in northern Iceland, hosts small, climatically sensitive cirque glaciers that became independent from the Iceland Ice Sheet after its retreat following the Last Glacial Maximum (c. 15 ka BP). Importantly, this region is located at the confluence of warm water and air masses from the south and cold polar water and air masses from the north, making it highly sensitive to North Atlantic and Arctic climate change. However, at present the region is highly understudied, lacking any high-resolution climate reconstructions.           </p><p>To address this, we combine geomorphological mapping with the first high-resolution analysis of proglacial lake sediments, to thoroughly examine northern Iceland Late Holocene environmental change.</p><p>Field mapping supplemented by high-resolution drone data was used to characterise catchment geomorphology, including seven Holocene moraines. A sediment core (SKD-P1-18) from proglacial lake Skeiðsvatn, Vatnsdalur, was analysed for sedimentological (dry bulk density, loss-on-ignition, grain size), geophysical (magnetic susceptibility) and geochemical (X-ray fluorescence core scan, 2 mm resolution) parameters.             <br>We identify three main sedimentary facies from these analyses, indicating variations in glacial input and catchment environmental conditions. Radiocarbon dating of lake macrofossils, supplemented by tephrochronology, provides a chronological framework. Catchment point samples, also analysed using the above analytical techniques, were used for sediment fingerprinting to disentangle non-glacial from glacial end-members.</p><p>Our results indicate the disappearance and reformation of small, climatically sensitive cirque glaciers in Vatnsdalur during the Holocene. We interpret the data to show an abrupt return to a glaciated catchment. Our results fill a geographical gap of high-resolution proglacial sediment studies in the Arctic-North Atlantic region.</p>


Sign in / Sign up

Export Citation Format

Share Document