scholarly journals Modeling Variation in Crown Profile with Tree Status and Cardinal Directions for Planted Larix olgensis Henry Trees in Northeast China

Forests ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 139 ◽  
Author(s):  
◽  
◽  
Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 202 ◽  
Author(s):  
Lihu Dong ◽  
Yue Zhang ◽  
Zhuo Zhang ◽  
Longfei Xie ◽  
Fengri Li

Accurate quantification of tree biomass is critical and essential for calculating carbon storage, as well as for studying climate change, forest health, forest productivity, nutrient cycling, etc. Tree biomass is typically estimated using statistical models. Although various biomass models have been developed thus far, most of them lack a detailed investigation of the additivity properties of biomass components and inherent correlations among the components and aboveground biomass. This study compared the nonadditive and additive biomass models for larch (Larix olgensis Henry) trees in Northeast China. For the nonadditive models, the base model (BM) and mixed effects model (MEM) separately fit the aboveground and component biomass, and they ignore the inherent correlation between the aboveground and component biomass of the same tree sample. For the additive models, two aggregated model systems with one (AMS1) and no constraints (AMS2) and two disaggregated model systems without (DMS1) and with an aboveground biomass model (DMS2) were fitted simultaneously by weighted nonlinear seemingly unrelated regression (NSUR) and applied to ensure additivity properties. Following this, the six biomass modeling approaches were compared to improve the prediction accuracy of these models. The results showed that the MEM with random effects had better model fitting and performance than the BM, AMS1, AMS2, DMS1, and DMS2; however, when no subsample was available to calculate random effects, AMS1, AMS2, DMS1, and DMS2 could be recommended. There was no single biomass modeling approach to predict biomass that was best for all aboveground and component biomass except for MEM. The overall ranking of models based on the fit and validation statistics obeyed the following order: MEM > DMS1 > AMS2 > AMS1> DMS2 > BM. This article emphasized more on the methodologies and it was expected that the methods could be applied by other researchers to develop similar systems of the biomass models for other species, and to verify the differences between the aggregated and disaggregated model systems. Overall, all biomass models in this study have the benefit of being able to predict aboveground and component biomass for larch trees and to be used to predict biomass of larch plantations in Northeast China.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 522 ◽  
Author(s):  
Qiang Liu ◽  
Fengri Li

Understanding the spatial and seasonal variations in leaf physiology is critical for accurately modeling the carbon uptake, physiological processes and growth of entire canopies and stands. For a 17-year-old Larix olgensis Henry plantation, vertical whorl-by-whorl sampling and analyses of seasonally repeated measurements of major photosynthetic parameters were conducted, and the correlations between photosynthetic parameters and environmental conditions, leaf morphological traits and spatial position within the crown were analyzed. According to the correlations, the photosynthetic parameters were standardized based on the environmental conditions to avoid the influence of the changing environment on the patterns of spatial and seasonal variations of photosynthetic parameters. The results showed that the standardized light-saturated net photosynthetic rate (SPmax), standardized dark respiration (SRd) and standardized stomatal conductance under saturated light (Sgs-sat) were all negatively related to the relative depth into the crown (RDINC) throughout the growing season. However, their vertical patterns were different during the development of the phenological phase. In addition, different gradients of environmental conditions also influenced the values and the range of the vertical variation in photosynthesis. High temperature and low humidity usually resulted in smaller values and weaker vertical variations of SPmax and Sgs-sat, but larger values and more obvious vertical variations in SRd. SPmax and Sgs-sat usually exhibited a parabolic seasonal pattern in different vertical positions within the crown; however, SRd generally followed a concave pattern. These seasonal patterns were all weaker with increasing RDINC. Different environments also exhibited a significant influence on the seasonal patterns of photosynthesis. We suggested that standardization is necessary before analyzing spatial and seasonal variations. A single environmental condition could not represent the spatial and seasonal patterns under all gradients of the environment. Spatial and seasonal variations should be simultaneously analyzed because they are related to each other.


2022 ◽  
Vol 268 ◽  
pp. 112769
Author(s):  
Yuanshuo Hao ◽  
Faris Rafi Almay Widagdo ◽  
Xin Liu ◽  
Ying Quan ◽  
Zhaogang Liu ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 258 ◽  
Author(s):  
Jinfeng Song ◽  
Kai Cao ◽  
Chengwei Duan ◽  
Na Luo ◽  
Xiaoyang Cui

We investigated the impacts of graphene application at different concentrations on the growth and physiological characteristics of Changbai larch (Larix olgensis A. Henry) seedlings and the chemical properties and enzyme activities of Haplic Cambisols under these seedlings. The aim is to evaluate the environmental effects of graphene on the afforestation species and the zonal forest soils of Northeast China. Seedlings receiving 0 (CK), 25, 50, 100, 250, or 500 mg L−1 graphene were incubated for 30, 40, or 50 days. Low concentrations (25–50 mg L−1) of graphene increased the dry masses of root, stem, and leaf; however, high concentrations (100–500 mg L−1) inhibited them. Compared with those under 0 mg L−1 graphene, the root length, surface area, volume, and average diameter all increased during the early stages of incubation (i.e., 30 and 40 days) under low concentration of graphene (<50 or 100 mg L−1) and decreased at higher graphene concentration (>100 mg L−1); at 50 days, they were significantly inhibited. At 30 days, graphene decreased superoxide dismutase (SOD) and peroxidase (POD) activities, as well as pigment, soluble protein, and proline contents, and the decline increased with increasing graphene concentration; at 40 and 50 days, the above parameters increased initially and then decreased, reaching a maximum at 50 mg L−1. The changes in relative conductivity and malondialdehyde (MDA), superoxide anion and hydrogen peroxide contents were the opposite of those in the physiological indexes mentioned above. Therefore, graphene caused different degrees of oxidative stress in L. olgensis seedlings. At 30 days, graphene generally increased the organic matter, hydrolytic nitrogen, and available phosphorus and potassium contents of Haplic Cambisols, but these parameters decreased at 40 and 50 days. Graphene generally decreased acid phosphatase, urease, dehydrogenase, and catalase activities. Therefore, when graphene reaches a certain content level in this soil, it may also affect nitrogen and phosphorus cycling.


Sign in / Sign up

Export Citation Format

Share Document