scholarly journals Assessing the Long-Term Ecosystem Productivity Benefits and Potential Impacts of Forests Re-Established on a Mine Tailings Site

Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 707 ◽  
Author(s):  
Juha Metsaranta ◽  
Suzanne Beauchemin ◽  
Sean Langley ◽  
Bryan Tisch ◽  
Phyllis Dale

Restoring sites disturbed by industrial activity to a forested condition can ensure the continued provision of economic and ecosystem services from these areas. Impounded mine tailings are particularly challenging sites, and positive benefits of establishing trees must be balanced against risks associated with metal contamination, ongoing tailings stability, and the possibility of acid mine drainage. We used a hybrid biometric modelling approach based on dendrochronological reconstruction to retrospectively (1980–2015) quantify productivity and carbon dynamics of pine plantations growing on impounded mine tailings at the Vale waste management facility near Sudbury, Canada. Historical reclamation practices had remediated conditions sufficiently to allow conifer plantation establishment in the late 1970s. The revegetated sites were highly productive, when compared to reference conditions based on site index, wood volume growth, and ecosystem production, congruent with other studies showing that forests on revegetated post mining sites can be highly productive. However, metal concentrations in the forest floor were high, and further research is warranted to evaluate ecosystem impacts. Due to the requirement for energy-intensive inputs, we estimated that it took 12 years or more to recover the emissions associated with the revegetation process through C accumulated in biomass and soil at the revegetated sites.

RSC Advances ◽  
2018 ◽  
Vol 8 (33) ◽  
pp. 18682-18689 ◽  
Author(s):  
Emma Thompson Brewster ◽  
Guillermo Pozo ◽  
Damien J. Batstone ◽  
Stefano Freguia ◽  
Pablo Ledezma

Microbial electrochemical processes have potential to remediate acid mine drainage (AMD) wastewaters which are highly acidic and rich in sulfate and heavy metals, without the need for extensive chemical dosing.


1991 ◽  
Vol 24 (6) ◽  
pp. 25-33
Author(s):  
A. J. Jakeman ◽  
P. G. Whitehead ◽  
A. Robson ◽  
J. A. Taylor ◽  
J. Bai

The paper illustrates analysis of the assumptions of the statistical component of a hybrid modelling approach for predicting environmental extremes. This shows how to assess the applicability of the approach to water quality problems. The analysis involves data on stream acidity from the Birkenes catchment in Norway. The modelling approach is hybrid in that it uses: (1) a deterministic or process-based description to simulate (non-stationary) long term trend values of environmental variables, and (2) probability distributions which are superimposed on the trend values to characterise the frequency of shorter term concentrations. This permits assessment of management strategies and of sensitivity to climate variables by adjusting the values of major forcing variables in the trend model. Knowledge of the variability about the trend is provided by: (a) identification of an appropriate parametric form of the probability density function (pdf) of the environmental attribute (e.g. stream acidity variables) whose extremes are of interest, and (b) estimation of pdf parameters using the output of the trend model.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 164
Author(s):  
Honorine Gauthier-Manuel ◽  
Diane Radola ◽  
Flavien Choulet ◽  
Martine Buatier ◽  
Raphaël Vauthier ◽  
...  

Over the course of history, the development of human societies implied the exploitation of mineral resources which generated huge amounts of mining wastes leading to substantial environmental contamination by various metal(loid)s. This is especially the case of coal mine tailings which, subjected to weathering reactions, produce acid mine drainage (AMD), a recurring ecological issue related to current and past mining activities. In this study, we aimed to determine the origin, the fate and the ecotoxicity of metal(loid)s leached from a historical coal tailing heap to the Beuveroux river (Franche-Comté, France) using a combination of mineralogical, chemical and biological approaches. In the constitutive materials of the tailings, we identified galena, tetrahedrite and bournonite as metal-rich minerals and their weathering has led to massive contamination of the water and suspended particles of the river bordering the heap. The ecotoxicity of the AMD has been assessed using Chironomus riparius larvae encaged in the field during a one-month biomonitoring campaign. The larvae showed lethal and sub-lethal (growth and emergence inhibition and delay) impairments at the AMD tributary and near downstream stations. Metal bioaccumulation and subcellular fractionation in the larvae tissues revealed a strong bioavailability of, notably, As, Pb and Tl explaining the observed biological responses. Thus, more than 70 years after the end of mining operations, the coal tailings remain a chronic source of contamination and environmental risks in AMD effluent receiving waters.


Water SA ◽  
2015 ◽  
Vol 41 (5) ◽  
pp. 677 ◽  
Author(s):  
Vhahangwele Masindi ◽  
Mugera Wilson Gitari ◽  
Hlanganani Tutu ◽  
Marinda De Beer

1998 ◽  
Vol 35 (2) ◽  
pp. 234-250 ◽  
Author(s):  
JF (Derick) Nixon ◽  
Nick Holl

A geothermal model is described that simulates simultaneous deposition, freezing, and thawing of mine tailings or sequentially placed layers of embankment soil. When layers of soil or mine tailings are placed during winter subfreezing conditions, frozen layers are formed in the soil profile that may persist with time. The following summer, warmer soil placement may not be sufficient to thaw out layers from the preceding winter. Remnant frozen soil layers may persist for many years or decades. The analysis is unique, as it involves a moving upper boundary and different surface snow cover functions applied in winter time. The model is calibrated based on two uranium mines in northern Saskatchewan. The Rabbit Lake scenario involves tailings growth to a height of 120 m over a period of 24 years. At Key Lake, tailings increase in height at a rate of 1.3 m/year. Good agreement between the observed position of frozen layers and those predicted by the model is obtained. Long-term predictions indicate that from 80 to 200 years would be required to thaw out the frozen layers formed during placement, assuming 1992 placement conditions continue. Deposition rates of 1.5-3 m/year give the largest amounts of frozen ground. The amount of frozen ground is sensitive to the assumed snow cover function during winter.Key words: geothermal, model, tailings, freezing, deposition.


2018 ◽  
Vol 30 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Mirabelle Perossi Cunha ◽  
Rafael Marçal Ferraz ◽  
Giselle Patrícia Sancinetti ◽  
Renata Piacentini Rodriguez

2001 ◽  
Vol 38 (2) ◽  
pp. 401-411 ◽  
Author(s):  
Mark D.F. Shirley ◽  
Stephen P. Rushton ◽  
Andrew G. Young ◽  
Gordon R. Port

2009 ◽  
Vol 91 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Muluken B. Yeheyis ◽  
Julie Q. Shang ◽  
Ernest K. Yanful

Sign in / Sign up

Export Citation Format

Share Document