scholarly journals Ethanol Production from Olive Stones through Liquid Hot Water Pre-Treatment, Enzymatic Hydrolysis and Fermentation. Influence of Enzyme Loading, and Pre-Treatment Temperature and Time

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 25
Author(s):  
Manuel Cuevas ◽  
Juan F. García Martín ◽  
Vicente Bravo ◽  
Sebastián Sánchez

Olive table industry, olive mills and olive pomace oil extraction industries annually generate huge amounts of olive stones. One of their potential applications is the production of bioethanol by fractionation of their lignocellulose constituents and subsequent fermentation of the released sugars using yeasts. In this work, we studied the influence of temperature (175–225 °C) and residence time (0–5 min) in the liquid hot-water pre-treatment of olive stones as well as the initial enzyme loading (different mixtures of cellulases, hemicellulases and β–glucosidases) in the later enzymatic hydrolysis on the release of fermentable sugars. The Chrastil’s model was applied to the d-glucose data to relate the severity of pre-treatment to enzyme diffusion through the pre-treated cellulose. Finally, the hydrolysate obtained under the most suitable conditions (225 °C and 0 min for pre-treatment; 24 CE initial enzyme concentration) was fermented into ethanol using the yeast Pachysolen tannophilus ATCC 32691. Considering the overall process, 6.4 dm3 ethanol per 100 kg olive stones were produced.

2018 ◽  
Vol 156 ◽  
pp. 01015
Author(s):  
Tri Poespowati ◽  
Ardy Riyanto ◽  
Hazlan ◽  
Ali Mahmudi ◽  
Rini Kartika-Dewi

Ulva lactuca is one of green macro-algae that has a significant cellulose content. This study aims to determine the effect of variations in substrate-enzyme ratio and hydrolysis time on the enzymatic hydrolysis process of cellulose extracted from Ulva lactuca to produce fermentable sugar or reducing sugar as a raw material for making bioethanol. Firstly, Liquid Hot Water (LHW) pre-treatment process was performed at the temperature of 135°C for 20 minutes; the purpose of this pre-treatment was to reduce the content of hemicellulose and to increase the cellulose content. Secondly, enzymatic hydrolysis process using cellulase enzyme was carried out, in this process citrate buffer was needed in order to stabilize the pH level during hydrolysis process. The process variables were ratio of substrate-enzyme (1:0.05; 1:0.1; 1:1.5; 1:2 and 1:2.5 w/w) and hydrolysis time (24, 48 and 72 hours) under temperature of 45°C and pH level of 5.5. The results shows that the highest reducing sugar yield is 79.7% obtained at a ratio of substrate-enzyme of 1:2.5 (w/w) for 48 hours of hydrolysis time, with the result of reducing sugar concentration is 16.2043 mg/mL.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1640
Author(s):  
M.A. Martín-Lara ◽  
L. Chica-Redecillas ◽  
A. Pérez ◽  
G. Blázquez ◽  
G. Garcia-Garcia ◽  
...  

In this work, liquid hot water pretreatment (autohydrolysis) was used to improve enzymatic hydrolysis of a commonly consumed vegetable waste in Spain, Italian green pepper, to finally produce fermentable sugars. Firstly, the effect of temperature and contact time on sugar recovery during pretreatment (in insoluble solid and liquid fraction) was studied in detail. Then, enzymatic hydrolysis using commercial cellulase was performed with the insoluble solid resulting from pretreatment. The objective was to compare results with and without pretreatment. The results showed that the pretreatment step was effective to facilitate the sugars release in enzymatic hydrolysis, increasing the global sugar yield. This was especially notable when pretreatment was carried out at 180 °C for 40 min for glucose yields. In these conditions a global glucose yield of 61.02% was obtained. In addition, very low concentrations of phenolic compounds (ranging from 69.12 to 82.24 mg/L) were found in the liquid fraction from enzymatic hydrolysis, decreasing the possibility of fermentation inhibition produced by these components. Results showed that Italian green pepper is an interesting feedstock to obtain free sugars and prevent the enormous quantity of this food waste discarded annually.


2011 ◽  
Vol 109 (2) ◽  
pp. 390-397 ◽  
Author(s):  
Meijuan Zeng ◽  
Eduardo Ximenes ◽  
Michael R. Ladisch ◽  
Nathan S. Mosier ◽  
Wilfred Vermerris ◽  
...  

2020 ◽  
Vol 112 ◽  
pp. 71-78
Author(s):  
Florentyna Akus-Szyblerg ◽  
Jan Szadkowski ◽  
Andrzej Antczak ◽  
Janusz Zawadzki

Changes in poplar (Populus trichocarpa) wood porous structure after liquid hot water (LHW) pretreatment. The aim of this research was to investigate the effect of applying different hydrothermal pretreatment conditions on the porous structure of poplar wood. Porosity is recognised as an important factor considering efficiency of an enzymatic hydrolysis as a step of bioethanol production. Native poplar wood as well as solid fractions after pretreatment performed at different temperatures (160 °C, 175 °C and 190 °C) were analysed. Porous structure was examined with an inverse size-exclusion chromatography (ISEC) method. Results indicated a significant development of the porous structure of the biomass with increasing porosity along with the growing temperature of the LHW process. The temperature of 190 °C was chosen as the most promising condition of poplar wood LHW pretreatment in terms of the efficiency of the subsequent steps of bioethanol production. The obtained results were consistent with the previous experimental data procured during analysis of the LHW pretreated poplar wood and its subsequent enzymatic hydrolysis yield.


2019 ◽  
Vol 33 (5) ◽  
pp. 4361-4368 ◽  
Author(s):  
Valeria Larnaudie ◽  
Mario Daniel Ferrari ◽  
Claudia Lareo

2007 ◽  
Vol 42 (6) ◽  
pp. 1003-1009 ◽  
Author(s):  
Cristóbal Cara ◽  
Manuel Moya ◽  
Ignacio Ballesteros ◽  
Ma José Negro ◽  
Alberto González ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 98-107
Author(s):  
Galileo E. Araguirang ◽  
Arianne Joyce R. Arizala ◽  
Eden Beth B. Asilo ◽  
Jamie Louise S. Batalon ◽  
Erin B. Bello ◽  
...  

Banana (M. acuminata x balbisiana) is an abundant lignocellulosic waste material in large plantations all over the Philippines, especially in Mindanao, which can be utilized as substrate in producing high-value products like ethanol. To compensate for the low yield based on total weight of substrate due to the high moisture content of banana pseudostem, there is the primary challenge to make the conversion of this lignocellulosic biomass into monomeric sugar and then into ethanol more efficiently in order to achieve yields that would make it cost-competitive. Hence, this study evaluated the effects of solid loading, incubation time and amount of enzyme on yield of reducing sugars in the enzymatic hydrolysis process and attempted to optimize the significant factors by Response Surface Methodology (RSM), specifically using Box-Behnken design. There was significant improvement on the reducing sugar yield of the pretreated banana pseudostem at 20 h incubation time, 15 g solid loading and 0.55 % enzyme concentration. Ethanol production was observed to be higher in the detoxified substrate although biomass was higher for the non-detoxified substrate. As to our knowledge, the present study is the first attempt to produce second generation ethanol using banana pseudostem waste as feedstock in the Philippines.


Sign in / Sign up

Export Citation Format

Share Document