scholarly journals Growth of Non-Saccharomyces Native Strains under Different Fermentative Stress Conditions

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 124
Author(s):  
Margarita García ◽  
Julia Crespo ◽  
Juan Mariano Cabellos ◽  
Teresa Arroyo

The selection of yeast strains adapted to fermentation stresses in their winegrowing area is a key factor to produce quality wines. Twelve non-Saccharomyces native strains from Denomination of Origin (D.O.) “Vinos de Madrid” (Spain), a warm climate winegrowing region, were tested under osmotic pressure, ethanol, and acidic pH stresses. In addition, mixed combinations between non-Saccharomyces and a native Saccharomyces cerevisiae strain were practised. Phenotypic microarray technology has been employed to study the metabolic output of yeasts under the different stress situations. The yeast strains, Lachancea fermentati, Lachancea thermotolerans, and Schizosaccharomyces pombe showed the best adaptation to three stress conditions examined. The use of mixed cultures improved the tolerance to osmotic pressure by Torulaspora delbrueckii, S. pombe, and Zygosaccharomyces bailii strains and to high ethanol content by Candida stellata, S. pombe, and Z. bailii strains regarding the control. In general, the good adaptation of the native non-Saccharomyces strains to fermentative stress conditions makes them great candidates for wine elaboration in warm climate areas.

2015 ◽  
pp. 209-216 ◽  
Author(s):  
Eduardo P. Borges ◽  
Mário L. Lopes ◽  
Claudemir Bernardino ◽  
Alexandre Godoy ◽  
Fernando E. Ré ◽  
...  

The authors’ work started in fermentation in 1977 and in the 1980’s into sugar production and cane quality. Statistical analysis was a key factor for the success of improving yield in ethanol and sugar production as well as cane quality. Adaption of methods for industrial laboratories also was very important in relation to yield and in reduction of sugar losses in the factory. Methodologies to measure sugar losses occurring through degradation in the factory (evaporation) using ion chromatography and dry substance content with a digital density meter were adapted. The fermentation yield improved from 75% in 1977 to 92% in 2014, which was possible by adapting methods for live bacterial counting within 20 min, and by controlling contamination using antimicrobial products through research in the laboratory and the industry. Since 1990 yeasts for industrial fermentation were selected by karyotyping analysis of the nuclear chromosomes and in the last seven years based on mitochondrial DNA. The last technique made the “Process Driven Selection” possible, i.e. one or several yeast strains which fit each distillery. Floc formation in carbonated beverages is not only due to the Indicator Value (discovery by SPRI research group) but also to aconitic acid and calcium under Brazilian conditions.


Virus Genes ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 233-237
Author(s):  
Hendrik Reuper ◽  
Björn Krenz

AbstractTurnip mosaic virus (TuMV), belonging to the genus Potyvirus (family Potyviridae), has a large host range and consists of a single-stranded positive sense RNA genome encoding 12 proteins, including the P1 protease. This protein which is separated from the polyprotein by cis cleavage at its respective C-terminus, has been attributed with different functions during potyviral infection of plants. P1 of Turnip mosaic virus (P1-TuMV) harbors an FGSF-motif and FGSL-motif at its N-terminus. This motif is predicted to be a binding site for the host Ras GTPase-activating protein-binding protein (G3BP), which is a key factor for stress granule (SG) formation in mammalian systems and often targeted by viruses to inhibit SG formation. We therefore hypothesized that P1-TuMV might interact with G3BP to control and regulate plant SGs to optimize cellular conditions for the production of viral proteins. Here, we analyzed the co-localization of the Arabidopsis thaliana G3BP-2 with the P1 of two TuMV isolates, namely UK 1 and DEU 2. Surprisingly, P1-TuMV-DEU 2 co-localized with AtG3BP-2 under abiotic stress conditions, whereas P1-TuMV-UK 1 did not. AtG3BP-2::RFP showed strong SGs formation after stress, while P1-UK 1::eGFP maintained a chloroplastic signal under stress conditions, the signal of P1-DEU 2::eGFP co-localized with that of AtG3BP-2::RFP. This indicates a specific interaction between P1-DEU 2 and the AtG3BP family which is not solely based on the canonical interaction motifs.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1737
Author(s):  
Milan Banić ◽  
Dušan Stamenković ◽  
Aleksandar Miltenović ◽  
Dragan Jovanović ◽  
Milan Tica

The selection of a rubber compound has a determining influence on the final characteristics of rubber-metal springs. Therefore, the correct selection of a rubber compound is a key factor for development of rubber-metal vibration isolation springs with required characteristics. The procedure for the selection of the rubber compound for vibration isolation of rubber-metal springs has been proposed, so that the rubber-metal elements have the necessary characteristics, especially in terms of deflection. The procedure is based on numerical simulation of spring deflection with Bergström-Boyce constitutive model in virtual experiment, with a goal to determine which parameters of the constitutive model will lead to spring required deflection. The procedure was verified by case study defined to select rubber compound for a rubber–metal spring used in railway engineering.


2016 ◽  
Vol 27 (7) ◽  
pp. 1771-1780 ◽  
Author(s):  
Jaime Villacís ◽  
Cristina Armas ◽  
Susana Hang ◽  
Fernando Casanoves

Author(s):  
Renjun Hu ◽  
Xinjiang Lu ◽  
Chuanren Liu ◽  
Yanyan Li ◽  
Hao Liu ◽  
...  

While Point-of-Interest (POI) recommendation has been a popular topic of study for some time, little progress has been made for understanding why and how people make their decisions for the selection of POIs. To this end, in this paper, we propose a user decision profiling framework, named PROUD, which can identify the key factors in people's decisions on choosing POIs. Specifically, we treat each user decision as a set of factors and provide a method for learning factor embeddings. A unique perspective of our approach is to identify key factors, while preserving decision structures seamlessly, via a novel scalar projection maximization objective. Exactly solving the objective is non-trivial due to a sparsity constraint. To address this, our PROUD adopts a self projection attention and an L2 regularized sparse activation to directly estimate the likelihood of each factor to be a key factor. Finally, extensive experiments on real-world data validate the advantage of PROUD in preserving user decision structures. Also, our case study indicates that the identified key decision factors can help us to provide more interpretable recommendations and analyses.


2014 ◽  
Vol 4 (1) ◽  
pp. 124 ◽  
Author(s):  
Lamine Samagaci ◽  
Honore G. Ouattara ◽  
Bernadette G. Goualie ◽  
Sebastien L. Niamke

<p>Microbial preparation containing pectinolytic strains as starter culture should help to standardize cocoa fermentation and reduce the lost due to the variability of cocoa bean. In this study, carbon metabolism, fermentative capacity and effect of environmental conditions on pectinase synthesis were analyzed in four yeast strains previously characterized as highly pectinolytic and stress resistant. The strains showed a restricted carbon metabolism profile with capacity to ferment only glucose and fructose and grown maximally at 5% of these carbon sources. Furthermore, yeasts strains were able to keep round 80% of their relative growth at up to 15% of sugar concentrations and proved to be osmotolerant at 25% glucose. Theses strains expressed their highest fermentative capacity at 35 °C producing up to 10.78 cm<sup>3</sup>of CO<sub>2</sub> and lost more than 50% of this capacity at 40 °C. The isolates studied produced polygacturonase as sole pectinase, optimal production of this enzyme is reached at pH (5-6), at incubation temperature of 30 ºC for strains YS 128, YS 202 and 35 ºC for strains YS 165 and YS 201. However, stress conditions such as 0.5 % acetic acid, 2% lactic acid, 6% citric acid and 6% ethanol repress strongly polygalacturonase production in the strains analyzed. Yeast strains studied present some physiological properties potentially useful for cocoa fermentation but the use of these strains as starter should take into account, the stress conditions susceptible to hinder pectinase production. <strong></strong></p>


Crop Science ◽  
2015 ◽  
Vol 55 (3) ◽  
pp. 1026-1034 ◽  
Author(s):  
Stefan Haffke ◽  
Peer Wilde ◽  
Brigitta Schmiedchen ◽  
Bernd Hackauf ◽  
Steffen Roux ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michela Palla ◽  
Massimo Blandino ◽  
Arianna Grassi ◽  
Debora Giordano ◽  
Cristina Sgherri ◽  
...  
Keyword(s):  

Author(s):  
Dalia E. Miranda Castilleja ◽  
Jesús A. Aldrete Tapia ◽  
Sofía M. Arvizu Medrano ◽  
Montserrat Hernández Iturriaga ◽  
Lourdes Soto Muñoz ◽  
...  

2016 ◽  
Vol 197 ◽  
pp. 373-381 ◽  
Author(s):  
Florin Vararu ◽  
Jaime Moreno-García ◽  
Cătălin-Ioan Zamfir ◽  
Valeriu V. Cotea ◽  
Juan Moreno

Sign in / Sign up

Export Citation Format

Share Document