scholarly journals Comparison of two Turnip mosaic virus P1 proteins in their ability to co-localize with the Arabidopsis thaliana G3BP-2 protein

Virus Genes ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 233-237
Author(s):  
Hendrik Reuper ◽  
Björn Krenz

AbstractTurnip mosaic virus (TuMV), belonging to the genus Potyvirus (family Potyviridae), has a large host range and consists of a single-stranded positive sense RNA genome encoding 12 proteins, including the P1 protease. This protein which is separated from the polyprotein by cis cleavage at its respective C-terminus, has been attributed with different functions during potyviral infection of plants. P1 of Turnip mosaic virus (P1-TuMV) harbors an FGSF-motif and FGSL-motif at its N-terminus. This motif is predicted to be a binding site for the host Ras GTPase-activating protein-binding protein (G3BP), which is a key factor for stress granule (SG) formation in mammalian systems and often targeted by viruses to inhibit SG formation. We therefore hypothesized that P1-TuMV might interact with G3BP to control and regulate plant SGs to optimize cellular conditions for the production of viral proteins. Here, we analyzed the co-localization of the Arabidopsis thaliana G3BP-2 with the P1 of two TuMV isolates, namely UK 1 and DEU 2. Surprisingly, P1-TuMV-DEU 2 co-localized with AtG3BP-2 under abiotic stress conditions, whereas P1-TuMV-UK 1 did not. AtG3BP-2::RFP showed strong SGs formation after stress, while P1-UK 1::eGFP maintained a chloroplastic signal under stress conditions, the signal of P1-DEU 2::eGFP co-localized with that of AtG3BP-2::RFP. This indicates a specific interaction between P1-DEU 2 and the AtG3BP family which is not solely based on the canonical interaction motifs.

2018 ◽  
Vol 221 (4) ◽  
pp. 2026-2038 ◽  
Author(s):  
Bernadette Rubio ◽  
Patrick Cosson ◽  
Mélodie Caballero ◽  
Frédéric Revers ◽  
Joy Bergelson ◽  
...  

2007 ◽  
Vol 20 (4) ◽  
pp. 358-370 ◽  
Author(s):  
Chunling Yang ◽  
Rong Guo ◽  
Fei Jie ◽  
Dan Nettleton ◽  
Jiqing Peng ◽  
...  

Virus-infected leaf tissues comprise a heterogeneous mixture of cells at different stages of infection. The spatial and temporal relationships between sites of virus accumulation and the accompanying host responses, such as altered host gene expression, are not well defined. To address this issue, we utilized Turnip mosaic virus (TuMV) tagged with the green fluorescent protein to guide the dissection of infection foci into four distinct zones. The abundance of Arabidopsis thaliana mRNA transcripts in each of the four zones then was assayed using the Arabidopsis ATH1 GeneChip oligonucleotide microarray (Affymetrix). mRNA transcripts with significantly altered expression profiles were determined across gradients of virus accumulation spanning groups of cells in and around foci at different stages of infection. The extent to which TuMV-responsive genes were up- or downregulated primarily correlated with the amount of virus accumulation regardless of gene function. The spatial analysis also allowed new suites of coordinately regulated genes to be identified that are associated with chloroplast functions (decreased), sulfate assimilation (decreased), cell wall extensibility (decreased), and protein synthesis and turnover (induced). The functions of these downregulated genes are consistent with viral symptoms, such as chlorosis and stunted growth, providing new insight into mechanisms of pathogenesis.


Biochimie ◽  
2008 ◽  
Vol 90 (10) ◽  
pp. 1427-1434 ◽  
Author(s):  
Hiroshi Miyoshi ◽  
Hayato Okade ◽  
Shinji Muto ◽  
Noriko Suehiro ◽  
Hideki Nakashima ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hendrik Reuper ◽  
Khalid Amari ◽  
Björn Krenz

AbstractThe Arabidopsis thaliana genome encodes several genes that are known or predicted to participate in the formation of stress granules (SG). One family of genes encodes for Ras GTPase-activating protein–binding protein (G3BP)-like proteins. Seven genes were identified, of which one of the members was already shown to interact with plant virus proteins in a previous study. A phylogenetic and tissue-specific expression analysis, including laser-dissected phloem, by qRT-PCRs was performed and the sub-cellular localization of individual AtG3BP::EYFP fluorescent fusion proteins expressed in Nicotiana benthamiana epidermal cells was observed. Individual AtG3BP-protein interactions in planta were studied using the bimolecular fluorescence complementation approach in combination with confocal imaging in living cells. In addition, the early and late induction of G3BP-like expression upon Turnip mosaic virus infection was investigated by RNAseq and qRT-PCR. The results showed a high divergence of transcription frequency in the different plant tissues, promiscuous protein–protein interaction within the G3BP-like gene family, and a general induction by a viral infection with TuMV in A. thaliana. The information gained from these studies leads to a better understanding of stress granules, in particular their molecular mode of action in the plant and their role in plant virus infection.


2010 ◽  
Vol 23 (2) ◽  
pp. 144-152 ◽  
Author(s):  
Bo Min Kim ◽  
Noriko Suehiro ◽  
Tomohide Natsuaki ◽  
Tsuyoshi Inukai ◽  
Chikara Masuta

Strains TuR1 and TuC of Turnip mosaic virus (TuMV) induce different symptoms on Arabidopsis thaliana ecotype Landsberg erecta (Ler); plants infected with TuR1 develop systemic necrosis, while TuC causes mosaics. We previously found that the Ler systemic necrosis was controlled by a single dominant gene, TuNI (TuMV necrosis inducer), and that it was actually a form of host defense response leading to a hypersensitive reaction (HR)-like cell death. To identify the viral factor interacting with TuNI, the domain swapping between the genomic clones of TuR1 and TuC was carried out, and we identified the TuMV symptom determinant interacting with TuNI as the P3 gene. Moreover, it was found that the central 0.5-kb domain of P3, including three different amino acids between the two isolates, was responsible for the systemic HR. To verify that the P3 gene can alone induce necrosis, we analyzed the constitutive P3 expression in Ler transgenic plants and the transient P3 expression in Ler protoplasts. These results indicated that P3 alone caused HR-like cell death. In this study, we successfully demonstrated that the systemic necrosis by TuMV in Arabidopsis was determined by the gene-for-gene interaction between TuNI and P3 using the protoplast system for direct verification.


2008 ◽  
Vol 89 (9) ◽  
pp. 2339-2348 ◽  
Author(s):  
Philippe J. Dufresne ◽  
Eliane Ubalijoro ◽  
Marc G. Fortin ◽  
Jean-François Laliberté

The poly(A)-binding protein (PABP) is an important translation initiation factor that binds to the polyadenylated 3′ end of mRNA. We have previously shown that PABP2 interacts with the RNA-dependent RNA polymerase (RdRp) and VPg-Pro of turnip mosaic virus (TuMV) within virus-induced vesicles. At least eight PABP isoforms are produced in Arabidopsis thaliana, three of which (PABP2, PABP4 and PABP8) are highly and broadly expressed and probably constitute the bulk of PABP required for cellular functions. Upon TuMV infection, an increase in protein and mRNA expression from PAB2, PAB4 and PAB8 genes was recorded. In vitro binding assays revealed that RdRp and the viral genome-linked protein (VPg-Pro) interact preferentially with PABP2 but are also capable of interaction with one or both of the other class II PABPs (i.e. PABP4 and PABP8). To assess whether PABP is required for potyvirus replication, A. thaliana single and double pab knockouts were isolated and inoculated with TuMV. All lines showed susceptibility to TuMV. However, when precise monitoring of viral RNA accumulation was performed, it was found to be reduced by 2.2- and 3.5-fold in pab2 pab4 and pab2 pab8 mutants, respectively, when compared with wild-type plants. PABP levels were most significantly reduced in the membrane-associated fraction in both of these mutants. TuMV mRNA levels thus correlated with cellular PABP concentrations in these A. thaliana knockout lines. These data provide further support for a role of PABP in potyvirus replication.


2020 ◽  
Vol 103 (3) ◽  
pp. 1233-1245 ◽  
Author(s):  
Mathieu Gayral ◽  
Omar Arias Gaguancela ◽  
Evelyn Vasquez ◽  
Venura Herath ◽  
Francisco J. Flores ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document