scholarly journals Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey

2020 ◽  
Vol 12 (4) ◽  
pp. 65 ◽  
Author(s):  
Georgios Kavallieratos ◽  
Sokratis Katsikas ◽  
Vasileios Gkioulos

Safeguarding both safety and cybersecurity is paramount to the smooth and trustworthy operation of contemporary cyber physical systems, many of which support critical functions and services. As safety and security have been known to be interdependent, they need to be jointly considered in such systems. As a result, various approaches have been proposed to address safety and cybersecurity co-engineering in cyber physical systems. This paper provides a comprehensive survey of safety and cybersecurity co-engineering methods, and discusses relevant open issues and research challenges. Despite the extent of the existing literature, several aspects of the subject still remain to be fully addressed.

2021 ◽  
Vol 82 (3) ◽  
pp. 12-17
Author(s):  
Bohdan Stadnyk ◽  
◽  
Vasyl Yatsuk ◽  
Mykola Mykyjchuk ◽  
Svyatoslav Yatsyshyn ◽  
...  

The analysis of the concept of Open-Science Space is carried out. The existence of ways to achieve reproducibility and traceability of research results performed by a group of worldwide situated Cyber-physical system operators/supervisors is shown. Ways to ensure the efficient operation of Cyber-physical systems as complex technological nondemountable objects with high requirements for metrological characteristics have been studied. To develop the scattered cyberphysical systems, the portable stable-in-time code-controlled measures of physical quantities have been studied. They have to be metrologically confirmed in the laboratory before the delivery to the site of the measuring subsystem for its calibration.


Author(s):  
Ismail Butun ◽  
Patrik Österberg

Interfacing the smart cities with cyber-physical systems (CPSs) improves cyber infrastructures while introducing security vulnerabilities that may lead to severe problems such as system failure, privacy violation, and/or issues related to data integrity if security and privacy are not addressed properly. In order for the CPSs of smart cities to be designed with proactive intelligence against such vulnerabilities, anomaly detection approaches need to be employed. This chapter will provide a brief overview of the security vulnerabilities in CPSs of smart cities. Following a thorough discussion on the applicability of conventional anomaly detection schemes in CPSs of smart cities, possible adoption of distributed anomaly detection systems by CPSs of smart cities will be discussed along with a comprehensive survey of the state of the art. The chapter will discuss challenges in tailoring appropriate anomaly detection schemes for CPSs of smart cities and provide insights into future directions for the researchers working in this field.


Author(s):  
Imen Graja ◽  
Slim Kallel ◽  
Nawal Guermouche ◽  
Saoussen Cheikhrouhou ◽  
Ahmed Hadj Kacem

Author(s):  
Michael Voskoglou

The present article focuses on two directions. First, a new fuzzy method using TFNs or TpFNs as tools is developed for evaluating a group's mean performance, when qualitative grades instead of numerical scores are used for assessing its members' individual performance. Second, a new technique is applied for solving linear programming problems with fuzzy coefficients. Examples are presented on real life situations connected to hyper connectivity and computing problems. Such examples illustrate the applicability of our methods in the modern practice of the forthcoming era of a new industrial revolution that will be characterized by the development of an advanced Internet of Things and energy and by the cyber-physical systems controlled through it. A discussion follows for the perspectives of future research on the subject and the article closes with the general conclusions.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 611
Author(s):  
Michael Gr. Voskoglou ◽  
Abdel-Badeeh M. Salem

The present article focuses on the role that the artificial teaching and learning of mathematics could play for education in the forthcoming era of a new industrial revolution that will be characterized by the development of an advanced Internet of things and energy, and by the cyber-physical systems controlled through it. Starting with a brief review of the traditional learning theories and methods of teaching mathematics, the article continues by studying the use of computers and of applications of artificial intelligence (AI) in mathematics education. The advantages and disadvantages of artificial with respect to traditional learning in the classroom are also discussed, and the article closes with the general conclusions and a few comments on the perspectives of future research on the subject.


2014 ◽  
Vol 484-485 ◽  
pp. 427-430
Author(s):  
Zhe Jun Kuang ◽  
Liang Hu ◽  
Chen Zhang

Cyber-physical systems (CPS) are complex distributed heterogeneous systems which integrating cyber and physical processes by computation, communication and control. During interaction between cyber and physical world, the traditional theories and applications has been difficult to satisfy real-time performance and efficient. Cyber-physical systems clearly have a role to play in developing a new theory of computer-mediated physical systems. The aim of this work is to analysis the features and relation technology of CPS that get better understanding for this new field. We summarized the research progresses from different perspectives such as modeling, classical tools and applications. Finally, the research challenges for CPS are in brief outlined.


Author(s):  
Imre Horváth ◽  
Junfeng Wang

Interaction with cyber-physical systems (CPSs) is a new challenge for system developers and human-system interaction designers, and but also for end-users. Due to the lack of proper insights, there are many unknowns, open issues, and eventually new challenges. For this reason, there is a need for a comprehensive theory that considers all aspects of interaction with CPSs, provides a reasoning framework, and facilitates the implementation of highly interactive CPSs. The research presented in this paper tries to make the first steps in this direction. We are aware of the fact that, in the case of CPSs, system-human interaction and system-system interaction are to be considered besides human-system interaction. Human-system interaction influenced by: (i) the level of interaction, (ii) the intellectual domains of interaction, (iii) the contexts of interaction, and (iv) the modalities of interaction. The proposed theory decomposes these into various constituents and captures the relations among them. Physical, syntactic, semantic, semantic, pragmatic and apobetic levels of interaction are considered in combination with four domains of interaction (perceptive, cognitive, motor, and emotional). In addition to the common human interaction modalities (visual, audio, haptic, etc.), the theory also considers system communication channels. It is claimed that interaction is also influenced by the implicit context implied by the specific objectives of interaction, i.e., cooperation, coordination, collaboration of coadunation, and not only by the explicit context provided by narrower and broader embedding environments of CPSs. The theory establishes explicit relationships between the above mentioned influencing factors, which are important at specifying wishful interaction profiles. The advantages that the proposed comprehensive theory offers in comparison with the traditional interaction design approaches are shown through the example of a smart bathroom.


Sign in / Sign up

Export Citation Format

Share Document