scholarly journals A BIM-Based Smart System for Fire Evacuation

2021 ◽  
Vol 13 (9) ◽  
pp. 221
Author(s):  
Rania Wehbe ◽  
Isam Shahrour

Building fires constitute a significant threat that affects property, the environment, and human health. The management of this risk requires an efficient fire evacuation system for buildings’ occupants. Therefore, a smart fire evacuation system that combines building information modeling (BIM) and smart technologies is proposed. The system provides the following capacities: (i) early fire detection; (ii) the evaluation of environmental data; (iii) the identification of the best evacuation path; and (iv) information for occupants about the best evacuation routes. The system was implemented in a research building at Lille University in France. The results show the system’s capacities and benefits, particularly for the identification of the best evacuation paths.

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3128 ◽  
Author(s):  
Jinyue Zhang ◽  
Jianing Guo ◽  
Haiming Xiong ◽  
Xiangchi Liu ◽  
Daxin Zhang

Many research studies have focused on fire evacuation planning. However, because of the uncertainties in fire development, there is no perfect solution. This research proposes a fire evacuation management framework which takes advantage of an information-rich building information modeling (BIM) model and a Bluetooth low energy (BLE)-based indoor real-time location system (RTLS) to dynamically push personalized evacuation route recommendations and turn-by-turn guidance to the smartphone of a building occupant. The risk score (RS) for each possible route is evaluated as a weighted summation of risk level index values of all risk factors for all segments along the route, and the route with the lowest RS is recommended to the evacuee. The system will automatically re-evaluate all routes every 2 s based on the most updated information, and the evacuee will be notified if a new and safer route becomes available. A case study with two testing scenarios was conducted for a commercial office building in Tianjin, China, in order to verify this framework.


2021 ◽  
Vol 13 (16) ◽  
pp. 9073
Author(s):  
Annamária Behúnová ◽  
Lucia Knapčíková ◽  
Marcel Behún ◽  
Tomáš Mandičák ◽  
Peter Mésároš

Healthy residential buildings represent the future of construction concerned with the environment, which is increasingly emphasized. This is directly related to the research and development of environmentally friendly building materials, which on the one hand meet the specific requirements of the builder, and on the other hand do not harm the environment. The research is based on the possibility of achieving increased variability in healthy residential buildings via the customization of recycled polyvinyl butyral using smart technologies for sustainable design. This study has two sub-goals; the first and foremost is the development and adaptation of recycled polyvinyl butyral to increase the elevation of the healthy residential buildings. The second objective is to design a methodology, and create databases and intelligent designs, via knowledge and building information modeling (BIM) technologies. In future research, data on environmental materials (such as the abovementioned recycled polyvinyl butyral) should be implemented in the knowledge databases that will be methodically described in our second sub-target.


Author(s):  
C. Beyaz ◽  
E. D. Özgener ◽  
Y. G. Bağcı ◽  
Ö. Akın ◽  
H. Demirel

Abstract. Building Information Modelling (BIM) is a highly advanced spatial modeling method that is fully incorporated in the building lifecycle. With the support of Information Technologies, the use of BIM has become common in building management such as energy efficiency, indoor navigation and emergency evacuation simulations. This study focuses on emergency evacuation simulations since, integrating BIM and Spatial Information Science, could mitigate casualties in emergencies. Traditional evacuation management methods are generally inadequate since they are based on 2D evacuation plans, they are static and do not consider the characteristics/interactions of the people in the building. This study aims to integrate BIM and Agent-Based Modelling (ABM) for emergency evacuation simulations, where characteristics of the building and the users are incorporated. Istanbul Technical University Faculty of Civil Engineering was selected as study area and the BIM model was created by using the CAD drawings of the floor plans. The users of the Faculty building such as students, academicians, administrative staff and visitors are considered for simulations. The BIM model was transferred to the ABM environment, and the routes used during the fire evacuation were generated. Fire evacuation simulations were performed, where agents having different characteristics evacuate the building according to the rules predefined. Three different scenarios were tested. Major conclusion of this study is that, via integrating BIM and ABM, it is possible to model people’s behavior within a three-dimensional digital environment, where decision-makers could be performing simulations such as fire evacuation supported by dynamic, realistic and accurate information.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Sign in / Sign up

Export Citation Format

Share Document