scholarly journals Intelligent Designing and Increasing the Variability of Healthy Residential Buildings by Customizing Recycled Polyvinyl Butyral

2021 ◽  
Vol 13 (16) ◽  
pp. 9073
Author(s):  
Annamária Behúnová ◽  
Lucia Knapčíková ◽  
Marcel Behún ◽  
Tomáš Mandičák ◽  
Peter Mésároš

Healthy residential buildings represent the future of construction concerned with the environment, which is increasingly emphasized. This is directly related to the research and development of environmentally friendly building materials, which on the one hand meet the specific requirements of the builder, and on the other hand do not harm the environment. The research is based on the possibility of achieving increased variability in healthy residential buildings via the customization of recycled polyvinyl butyral using smart technologies for sustainable design. This study has two sub-goals; the first and foremost is the development and adaptation of recycled polyvinyl butyral to increase the elevation of the healthy residential buildings. The second objective is to design a methodology, and create databases and intelligent designs, via knowledge and building information modeling (BIM) technologies. In future research, data on environmental materials (such as the abovementioned recycled polyvinyl butyral) should be implemented in the knowledge databases that will be methodically described in our second sub-target.

2021 ◽  
Vol 13 (6) ◽  
pp. 3092
Author(s):  
Sungwoo Lee ◽  
Sungho Tae ◽  
Hyungjae Jang ◽  
Chang U. Chae ◽  
Youngjin Bok

Eco-friendly building designs that use building information modeling (BIM) have become popular, and a variety of eco-friendly building assessment technologies that take advantage of BIM are being developed. However, existing building environmental performance assessment technologies that use BIM are linked to external assessment tools, and there exist compatibility issues among programs; it requires a considerable amount of time to address these problems, owing to the lack of experts who can operate the programs. This study aims to develop eco-friendly templates for assessing the embodied environmental impact of buildings using BIM authoring tools as part of the development of BIM-based building life cycle assessment (LCA) technologies. Therefore, an embodied environmental impact unit database was developed, for major building materials during production and operating stages, to perform embodied environmental impact assessments. Moreover, a major structural element library that uses the database was developed and a function was created to produce building environmental performance assessment results tables, making it possible to review the eco-friendliness of buildings. A case study analysis was performed to review the feasibility of the environmental performance assessment technologies. The results showed a less than 5% effective error rate in the assessment results that were obtained using the technology developed in this study compared with the assessment results based on the actual calculation and operating stage energy consumption figures, which proves the reliability of the proposed approach.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Vestnik MGSU ◽  
2020 ◽  
pp. 867-906 ◽  
Author(s):  
Vladimir A. Volkodav ◽  
Ivan A. Volkodav

Abstract Introduction. Various building information classification systems are used internationally; their critical analysis makes it possible to highlight basic requirements applicable to the Russian classifier and substantiate its structure and composition. Materials and methods. Modern international building information classification systems, such as OmniClass (USA), Uniclass 2015 (UK), CCS (Denmark), and CoClass (Sweden), are considered in the article. Their structure, composition, methodological fundamentals are analyzed. In addition to international classification systems, Russian construction information classifiers are analyzed. Results. The structure of a building information classifier has been developed and tailored to the needs of BIM (building information modeling) and national regulatory and technical requirements. The classifier’s structure complies with the one recommended by ISO 12006-2:2015. Its composition has regard to the requirements that apply to the aggregation and unification of Russian classifiers, and it also benefits from the classifiers developed for and used by the construction industry. The proposed building information classifier has four basic categories and 21 basic classes. Conclusions. The proposed structure and composition of a building information classifier represent a unified and universal tool for communicating building information or presenting it in the standardized format in the consolidated information space designated for information models needed to manage life cycles of major construction projects.


2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.


2019 ◽  
Vol 9 (9) ◽  
pp. 1732 ◽  
Author(s):  
Mooyoung Yoo ◽  
Jaejun Kim ◽  
Changsik Choi

Small- and medium-sized enterprises (SMEs) are part of the building construction industry. Although many effect analyses of applying building information modeling (BIM) to projects have been conducted, analyses from the perspective of SMEs are lacking. We propose a BIM-based construction of prefabricated steel framework from the perspective of SMEs. We derive the essential functions of the system from the viewpoint of SMEs and verify the qualitative effect through a case analysis of prefabricated steel frame construction that is based on BIM. The following system functions and qualitative effects are analyzed according to project stages that are based on interviews of working groups participating in system development and case projects. (1) Preconstruction stage: extraction of fabrication drawing and review of shop drawing, (2) fabrication stage: prefabrication review, steel member removal, and field loading review, and (3) construction phase: integrated management of cost and schedule and quality management. The expected effects of applying the system are qualitatively and quantitatively analyzed through expert group interviews and surveys. For the quantitative analysis, an evaluation index is used for the end-user computing satisfaction survey. Further analysis of the finishing and installation work is required. Future research should also analyze the effect of system application on human resource management.


2014 ◽  
Vol 522-524 ◽  
pp. 806-810 ◽  
Author(s):  
Jae Woo Park ◽  
Gi Wook Cha ◽  
Won Hwa Hong ◽  
Hyun Cheol Seo

Recently, BIM (Building Information Modeling) became mandatory in Korea, and BIM started to be implemented in construction area. It is a design tool for maximizing the efficiency of design, construction, and maintenance throughout the entire lifecycle, but there are not many studies about the demolition wastes (DW) in the demolition stage. This study gathered basic data concerning the development of a database of DW disposed in the demolition stage using BIM-based building material database. For this, a BIM software, ARCHICAD, and construction material categories of the item list system of the PPS (Public Procurement Service) were analyzed to select major building materials. Based on the analysis, the disposal routes were analyzed considering the characteristics of DW. The database of DW was developed by examining the disposal routes of 52 major construction materials selected according to the characteristics of each material during demolition and selecting 7 major DW.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 586 ◽  
Author(s):  
Ziwen Liu ◽  
Qian Wang ◽  
Vincent J.L. Gan ◽  
Luke Peh

Building Information Modeling (BIM) and sustainable buildings are two future cornerstones of the Architectural, Engineering and Construction (AEC) industry. In Singapore’s context, the Green Mark (GM) scoring system is prevalently used to assess the sustainability index of green buildings. BIM provides the semantic and geometry information of buildings, which is proliferated as the technological and process backbone for the green building assessment. This research, through vast literature reviews, identified that the current procedure of achieving a Green Mark score is tedious and cumbersome, which hampers productivity, especially in the calculation of building envelope thermal performance. Furthermore, the project stakeholders work in silos, in a non-collaborative, manual and 2D-based environment for generating relevant documentation to achieve the requisite green mark score. To this end, a cloud-based BIM platform was developed, with the aim of encouraging project stakeholders to collaboratively generate the project’s green mark score digitally in accordance with the regulatory requirements. Through this research, the authors have validated the Envelope Thermal Transfer Value (ETTV) calculation, which is one of the prerequisite criteria to achieve a Green Mark score, through a case study using the developed cloud-based BIM platform. The results indicated that using the proposed platform enhances the productivity and accuracy as far as ETTV calculation is concerned. This study provides a basis for future research in implementing the proposed platform for other criteria under the Green Mark Scheme.


2020 ◽  
Vol 897 ◽  
pp. 166-172
Author(s):  
Zahraa Ali Jalil ◽  
Hafeth I. Naji ◽  
Mohammed Mahmood

The number of destroyed cities in Iraq has increased significantly over the last five years. It presents a negative impact on the country's economy on the one hand and on the environment on the other. Reconstruction of these cities requires substantial capital to provide building materials needed for reconstruction and this leads to depletion of natural resources. This paper aims at finding an effective management method that contributes to the investment of the remnants of the components of destroyed buildings, including reinforcing steel, using the building information modelling (BIM) technique. The results showed that the amount of steel reinforcement that can be obtained from the destroyed buildings is enormous. Therefore, these quantities must be addressed through reusing or recycling. The sale of these quantities as recycling materials can provide a large income which can be added to the capital of the project.


Sign in / Sign up

Export Citation Format

Share Document