scholarly journals SMYOLO: Lightweight Pedestrian Target Detection Algorithm in Low-Altitude Scenarios

2022 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Weiwei Zhang ◽  
Xin Ma ◽  
Yuzhao Zhang ◽  
Ming Ji ◽  
Chenghui Zhen

Due to the arbitrariness of the drone’s shooting angle of view and camera movement and the limited computing power of the drone platform, pedestrian detection in the drone scene poses a greater challenge. This paper proposes a new convolutional neural network structure, SMYOLO, which achieves the balance of accuracy and speed from three aspects: (1) By combining deep separable convolution and point convolution and replacing the activation function, the calculation amount and parameters of the original network are reduced; (2) by adding a batch normalization (BN) layer, SMYOLO accelerates the convergence and improves the generalization ability; and (3) through scale matching, reduces the feature loss of the original network. Compared with the original network model, SMYOLO reduces the accuracy of the model by only 4.36%, the model size is reduced by 76.90%, the inference speed is increased by 43.29%, and the detection target is accelerated by 33.33%, achieving minimization of the network model volume while ensuring the detection accuracy of the model.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhaoli Wu ◽  
Xin Wang ◽  
Chao Chen

Due to the limitation of energy consumption and power consumption, the embedded platform cannot meet the real-time requirements of the far-infrared image pedestrian detection algorithm. To solve this problem, this paper proposes a new real-time infrared pedestrian detection algorithm (RepVGG-YOLOv4, Rep-YOLO), which uses RepVGG to reconstruct the YOLOv4 backbone network, reduces the amount of model parameters and calculations, and improves the speed of target detection; using space spatial pyramid pooling (SPP) obtains different receptive field information to improve the accuracy of model detection; using the channel pruning compression method reduces redundant parameters, model size, and computational complexity. The experimental results show that compared with the YOLOv4 target detection algorithm, the Rep-YOLO algorithm reduces the model volume by 90%, the floating-point calculation is reduced by 93.4%, the reasoning speed is increased by 4 times, and the model detection accuracy after compression reaches 93.25%.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Peng Wang ◽  
Haiyan Wang ◽  
Xiaoyan Li ◽  
Lingling Zhang ◽  
Ruohai Di ◽  
...  

With the development of deep learning, target detection from vision sensor has achieved high accuracy and efficiency. However, small target detection remains a challenge due to inadequate use of semantic information and detailed texture information of underlying features. To solve the above problems, this paper proposes a small target detection algorithm based on Mask R-CNN model which integrates transfer learning and deep separable network. Firstly, the feature pyramid fusion structure is introduced to enhance the learning effect of low-level and high-level features, especially to strengthen the information channel of low-level feature and meanwhile optimize the feature information of small target. Secondly, the ELU function is used as the activation function to solve the problem that the original activation function disappears in the negative half axis gradient. Finally, a new loss function F-Softmax combined with Focal Loss was adopted to solve the imbalance of positive and negative sample proportions. In this paper, self-made data set is used to carry out experiments, and the experimental results show that the proposed algorithm makes the detection accuracy of small targets reach 66.5%.


2021 ◽  
Vol 922 (1) ◽  
pp. 012001
Author(s):  
O M Lawal ◽  
Z Huamin ◽  
Z Fan

Abstract Fruit detection algorithm as an integral part of harvesting robot is expected to be robust, accurate, and fast against environmental factors such as occlusion by stem and leaves, uneven illumination, overlapping fruit and many more. For this reason, this paper explored and compared ablation studies on proposed YOLOFruit, YOLOv4, and YOLOv5 detection algorithms. The final selected YOLOFruit algorithm used ResNet43 backbone with Combined activation function for feature extraction, Spatial Pyramid Pooling Network (SPPNet) for detection accuracies, Feature Pyramid Network (FPN) for feature pyramids, Distance Intersection Over Union-Non Maximum Suppression (DIoU-NMS) for detection efficiency and accuracy, and Complete Intersection Over Union (CIoU) loss for faster and better performance. The obtained results showed that the average detection accuracy of YOLOFruit at 86.2% is 1% greater than YOLOv4 at 85.2% and 4.3% higher than YOLOv5 at 81.9%, while the detection time of YOLOFruit at 11.9ms is faster than YOLOv4 at 16.6ms, but not with YOLOv5 at 2.7ms. Hence, the YOLOFruit detection algorithm is highly prospective for better generalization and real-time fruit detection.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 112
Author(s):  
Yuhang Liu ◽  
Jianxiao Ma ◽  
Yuchen Wang ◽  
Chenhong Zong

Pedestrian detection is widely used in cooperative vehicle infrastructure systems. Traditional pedestrian detection methods perform sufficiently well under sunny scenarios and obtain trustworthy traffic data. However, the detection drastically decreases under rainy scenarios. This study proposes a pedestrian detection algorithm with a de-raining module that improves detection accuracy under various rainy scenarios. Specifically, this algorithm determines the density information of rain and effectively removes rain streaks through the de-raining module. Then the algorithm detects pedestrians as a pair of keypoints through the pedestrian detection module to solve the problem of occlusion. Furthermore, a new pedestrian dataset containing rain density labels is established and used to train the algorithm. For the scenarios of light, medium, and heavy rain, extensive experiments on synthetic datasets demonstrate that the proposed algorithm increases AP (average precision) of pedestrian detection by 21.1%, 48.1%, and 60.9%. Moreover, the proposed algorithm performs well on real datasets and achieves improvements over the state-of-the-art methods, which reveals that the proposed algorithm can significantly improve the accuracy of pedestrian detection in rainy scenarios.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 557 ◽  
Author(s):  
Zhang ◽  
Liu ◽  
Liu ◽  
Li ◽  
Ye

The symmetrical difference kernel SAR image edge detection algorithm based on the Canny operator can usually achieve effective edge detection of a single view image. When detecting a multi-view SAR image edge, it has the disadvantage of a low detection accuracy. An edge detection algorithm for a symmetric difference nuclear SAR image based on the GAN network model is proposed. Multi-view data of a symmetric difference nuclear SAR image are generated by the GAN network model. According to the results of multi-view data generation, an edge detection model for an arbitrary direction symmetric difference nuclear SAR image is constructed. A non-edge is eliminated by edge post-processing. The Hough transform is used to calculate the edge direction to realize the accurate detection of the edge of the SAR image. The experimental results show that the average classification accuracy of the proposed algorithm is 93.8%, 96.85% of the detection edges coincide with the correct edges, and 97.08% of the detection edges fall into the buffer of three pixel widths, whichshows that the proposed algorithm has a high accuracy of edge detection for kernel SAR images.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3646
Author(s):  
Jingwei Cao ◽  
Chuanxue Song ◽  
Silun Peng ◽  
Shixin Song ◽  
Xu Zhang ◽  
...  

Pedestrian detection is an important aspect of the development of intelligent vehicles. To address problems in which traditional pedestrian detection is susceptible to environmental factors and are unable to meet the requirements of accuracy in real time, this study proposes a pedestrian detection algorithm for intelligent vehicles in complex scenarios. YOLOv3 is one of the deep learning-based object detection algorithms with good performance at present. In this article, the basic principle of YOLOv3 is elaborated and analyzed firstly to determine its limitations in pedestrian detection. Then, on the basis of the original YOLOv3 network model, many improvements are made, including modifying grid cell size, adopting improved k-means clustering algorithm, improving multi-scale bounding box prediction based on receptive field, and using Soft-NMS algorithm. Finally, based on INRIA person and PASCAL VOC 2012 datasets, pedestrian detection experiments are conducted to test the performance of the algorithm in various complex scenarios. The experimental results show that the mean Average Precision (mAP) value reaches 90.42%, and the average processing time of each frame is 9.6 ms. Compared with other detection algorithms, the proposed algorithm exhibits accuracy and real-time performance together, good robustness and anti-interference ability in complex scenarios, strong generalization ability, high network stability, and detection accuracy and detection speed have been markedly improved. Such improvements are significant in protecting the road safety of pedestrians and reducing traffic accidents, and are conducive to ensuring the steady development of the technological level of intelligent vehicle driving assistance.


Author(s):  
Dongxian Yu ◽  
Jiatao Kang ◽  
Zaihui Cao ◽  
Neha Jain

In order to solve the current traffic sign detection technology due to the interference of various complex factors, it is difficult to effectively carry out the correct detection of traffic signs, and the robustness is weak, a traffic sign detection algorithm based on the region of interest extraction and double filter is designed.First, in order to reduce environmental interference, the input image is preprocessed to enhance the main color of each logo.Secondly, in order to improve the extraction ability Of Regions Of Interest, a Region Of Interest (ROI) detector based on Maximally Stable Extremal Regions (MSER) and Wave Equation (WE) was defined, and candidate Regions were selected through the ROI detector.Then, an effective HOG (Histogram of Oriented Gradient) descriptor is introduced as the detection feature of traffic signs, and SVM (Support Vector Machine) is used to classify them into traffic signs or background.Finally, the context-aware filter and the traffic light filter are used to further identify the false traffic signs and improve the detection accuracy.In the GTSDB database, three kinds of traffic signs, which are indicative, prohibited and dangerous, are tested, and the results show that the proposed algorithm has higher detection accuracy and robustness compared with the current traffic sign recognition technology.


2021 ◽  
Vol 13 (10) ◽  
pp. 1909
Author(s):  
Jiahuan Jiang ◽  
Xiongjun Fu ◽  
Rui Qin ◽  
Xiaoyan Wang ◽  
Zhifeng Ma

Synthetic Aperture Radar (SAR) has become one of the important technical means of marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National territorial waters to achieve ship monitoring is conducive to national maritime law enforcement, implementation of maritime traffic control, and maintenance of national maritime security, so ship detection has been a hot spot and focus of research. After the development from traditional detection methods to deep learning combined methods, most of the research always based on the evolving Graphics Processing Unit (GPU) computing power to propose more complex and computationally intensive strategies, while in the process of transplanting optical image detection ignored the low signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR image processing method that makes full use of image information and the network’s ability to extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning framework for modeling architecture and training models. The YOLO-V4-light network was tailored for real-time and implementation, significantly reducing the model size, detection time, number of computational parameters, and memory consumption, and refining the network for three-channel images to compensate for the loss of accuracy due to light-weighting. The test experiments were completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical application in maritime safety monitoring and emergency rescue.


Sign in / Sign up

Export Citation Format

Share Document