scholarly journals Investigation on the Mechanical Properties and Post-Cracking Behavior of Polyolefin Fiber Reinforced Concrete

Fibers ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Suman Adhikary ◽  
Zymantas Rudzionis ◽  
Arvind Balakrishnan ◽  
Vignesh Jayakumar

This paper deals with the behavior of concrete’s self-compatibility in a fresh state and its compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3 kg/m3, 4.5 kg/m3, 6 kg/m3, and 9 kg/m3) of polyolefin macro fibers were mixed into the concrete mixture to observe the differences in workability and strength properties between the concrete specimens. As a partial replacement of cement, class C type of fly ash was added to make up 25% of the total cement mass. The water-binder ratio (W/B) of the concrete mix was 0.36. Superplasticizer was added to the concrete mixture to achieve self-compacting properties. The slump test was carried out in the fresh state for determining the flowability. On the 7th and 28th days of the curing process, compression strength tests were performed, and on the 28th day, flexural strength tests and crack mouth opening displacement (CMOD) analyses were carried out to determine the strength properties and post-cracking behavior of the concrete samples. Bending strength and post-cracking behavior of the samples were improved by the addition of fibers. The fiber concentration in the concrete mixture greatly influenced the slump flow and self-compaction properties.

2021 ◽  
Vol 20 (1) ◽  
pp. 37-51
Author(s):  
Kubilay Akçaözoğlu ◽  
◽  
Adem Kıllı ◽  

In this study, the effect of curing conditions on the mechanical properties of slurry infiltrated fiber reinforced concrete (SIFCON) was investigated. For this purpose, SIFCON samples containing 4% and 8% steel fiber with two different aspect ratios were produced. The samples were subjected to three different curing types, namely standard, dry and accelerated curing methods. Ultrasonic wave velocity, flexural strength, fracture toughness, compressive strength, impact resistance and capillary water absorption tests were performed on the samples. The highest flexural strength was found to be achieved in the samples with an aspect ratio of 55 and a content of 8% steel fiber. The most suitable curing method was determined as the standard curing method and the best flexural strength was achieved at the rate of 8%. According to the test results, the best strength properties were achieved in the samples exposed to the standard curing method. In addition, the samples exposed to the accelerated curing method showed satisfactory values. The accelerated curing method can be used as an alternative in SIFCON production especially in applications requiring mass production.


2021 ◽  
Author(s):  
Moustafa M Sammour

Fiber reinforced self-consolidating concrete (FRSCC) has a tremendous potential to be used in construction industry as it combines the advantagees of both self-consolidating concrete (SCC) and fiber reinforced concrete (FRC). 18 concrete mixtures were developed by incorporating differenct volumes (0 to 0.3) of polyvinyl alchohol (PVA) and metallic fibers. Fresh, rheological, mechanical and durability (in terms of chloride penetration resistance) properties of all FRSCC mixtures were evaluated. The influences of fiber types/size/ dosages and fiber combination (used in hybrid mixes) on fresh (slump flow, L-box passing ability, V-funnel flow time and segregation index), rheological (plastic viscosity and yield stress) and hardened (fracture energy and compressive/flexural/splitting tensile strength) properties were critically analyzed to examine the relationships among various properties as well as to suggest suitable FRSCC mixtures. The fibers (especially metallic ones) wre more effective in increasing the fracture energy of FRSCC than compressive/splitting tensile/flexural strength. A fracture energy gain of about 730% was observed (which is substantial) compared to 10% of compressive strength, 39% of splitting tensil strength and 124% of flexural strength. The improved strength and fracture energy of FRSCC mixtures can significantly reduce the amount of tensile reinforcement and subsantially increase the energy absorbing capacity of concrete structures.


2013 ◽  
Vol 330 ◽  
pp. 77-81
Author(s):  
Yu Chen ◽  
David Bloomquist ◽  
Raphael Crowley

ASTM C78, the Flexural Strength tests were conducted on Cellulose Fiber Reinforced Concrete (CFRC) samples subjected to difference moisture-levels to quantify the effect of moisture on them. Results indicated that modulus elasticity did not change along the increase in moisture. However, flexural strength and yield strength appeared to be affected under certain conditions.


2014 ◽  
Vol 1020 ◽  
pp. 210-214
Author(s):  
Daniel Pieszka ◽  
Karel Kubečka ◽  
Ivan Kološ

The aim of the paper is to investigate the flexural behavior and property changes of concrete structures reinforced by steel fibers (SFRC) and to use the results for carrying capacity assessment of SFRC post-cracked slab on ground structure with subsoil interaction effect. Because the national codes cover neither design nor assessment of SFRC structures the investigation is generally based on the nonlinear fracture mechanics models to establish the stress-crack opening and load-crack mouth opening displacement relationship. Then the flexural tensile strength and residual flexural tensile strength of the post-cracked SFRC structure is determined with respect to subsoil interaction.


2010 ◽  
Vol 168-170 ◽  
pp. 1784-1787
Author(s):  
Xiao Wei Wang ◽  
Wen Ling Tian ◽  
Ling Ling Fan ◽  
Ming Jie Zhou ◽  
Xiao Yan Zhao

In order to study the fracture toughness of steel fiber reinforced concrete (SFRC) and the postcracking toughness evaluation method, the fracture toughness tests were done for the four types of steel fibers and three kinds of matrix strength. According to the experiment curves of the load and the crack mouth opening displacement (Load-CMOD), the fracture toughness of SFRC was studied; the formulas of the postcracking toughness coefficient and the Fracture-CMOD toughness index were established. The experiment results show that the Fracture-CMOD toughness index can reflect sensitively to the effect on concrete toughness of the type of the steel fiber, and then it is avoid that the estimation error of the initial cracking point led to the evaluation error of the toughness.Comparison with other fibers B fiber shows the best crack resistance and the toughening ability.


Author(s):  
Aaron Kadima ◽  
Jeandry Bule Ntuku ◽  
Dênio Ramam Carvalho de Oliveira

This paper presents the results of the safety assessment of the β_1 coefficient that correlates the residual flexural tensile strength parameters fRi (i = 1, 2, 3, and 4) in steel fiber reinforced concrete (SFRC), collected through experimental notched beam flexural tests in three points, according to the fib Model Code 2010 (fib, 2013), with the bond strength (fu,f) of the hook-end type steel fiber in the concrete mix. The SFRC beams were chosen, which presents the load-opening ratio curve of the crack, F-CMOD (Crack Mouth Opening Displacement) in softening behavior, the compressive strength of the concrete, 25 MPa < fc < 80 MPa, the fiber volume content, 0.25 % < Vf < 0.80 % and the fiber aspect ratio, 60 < lf/df < 95. The results in 46 prisms notched of the database formed by 13 studies, showed a considerable influence of the fRi x fu,f ratio with lower variability of around 10%. Thus, through statistical resources, empirical proposals were established to estimate the residual flexural tensile strengths, as a viable and economical alternative to the design project.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5202
Author(s):  
Mohammad Iqbal Khan ◽  
Wasim Abbass ◽  
Mohammad Alrubaidi ◽  
Fahad K. Alqahtani

High-strength concrete is used to provide quality control for concrete structures, yet it has the drawback of brittleness. The inclusion of fibers improves the ductility of concrete but negatively affects the fresh properties of fiber-reinforced concrete. The effects of different fine to coarse aggregate ratios on the fresh and hardened properties of steel fiber reinforced concrete were investigated in this study. Mixtures were prepared with various fine to coarse aggregate (FA/CA) ratios incorporating 1% steel fiber content (by volume) at constant water to cement ratio. The workability, unit weight, and temperature of the concrete in the fresh state, and the mechanical properties of steel-fiber-reinforced concrete (SFRC) were investigated. The inclusion of fiber in concrete influenced the mobility of concrete in the fresh state by acting as a barrier to the movement of coarse aggregate. It was observed that the concrete with an FA/CA ratio above 0.8 showed better flowability in the fresh state, whilst an above 0.9 FA/CA ratio requires excessive superplasticizer to maintain the flowability of the mixtures. The compressive and flexural strength of SFRC increased with an increase in the FA/CA ratio by around 10% and 28%, respectively. Experimental values of compressive strength and flexural strength showed good agreement, however, modulus of elasticity demonstrated slightly higher values. The experimentally obtained measurements of the mechanical properties of SFRC conformed reasonably well with the available existing prediction equations, and further enabled establishing predictive isoresponse interactive equations within the scope of the investigation domain.


2020 ◽  
Vol 858 ◽  
pp. 199-204
Author(s):  
Neslyn L. Principio ◽  
John Patrick B. Avenido ◽  
Jinky Marie S. Manalo ◽  
Deo S. Perez

Due to urbanization, the use of concrete in construction and waste production are arising that resulted to negative impact in environment. There are several studies utilizing cementitious material as substitute to cement and plastic waste as additive to concrete which has potential in increasing the strength. This study utilized recycled polypropylene macro fiber (RPPMF) as a reinforcement and rice hull ash (RHA) as substitute to cement. Varying percentage of RHA (10%, 15%, and 20%) and RPPMF (0.5%, 0.75%, and 1.0%) were incorporated in the concrete mix. Compressive and flexural strength results showed that the combination of RHA and RPPMF has a significant effect in the strength of concrete. Based from the results, the concrete with 10% replacement of RHA and 0.5% addition of RPPMF is theoptimum which has the highest compressive strength of 19.47 MPa with an increase of 13.40%, and a maximum flexural strength test of 3.7 MPa with an increase of 18.62%. Furthermore, the concrete with 10% replacement of RHA for both with additive of 0.75% and 1% RPPMF also attained higher flexural strength than of normal mix with 18.07% and 3.45% increase, respectively. It can be recommended to use for basement foundation walls and slabs, walks, patios, steps, and stairs. Also, it can be used for street roads because it reaches the standard strength of normal mix concrete and lessen the cracks due to addition of RPPMF.


2021 ◽  
Author(s):  
Moustafa M Sammour

Fiber reinforced self-consolidating concrete (FRSCC) has a tremendous potential to be used in construction industry as it combines the advantagees of both self-consolidating concrete (SCC) and fiber reinforced concrete (FRC). 18 concrete mixtures were developed by incorporating differenct volumes (0 to 0.3) of polyvinyl alchohol (PVA) and metallic fibers. Fresh, rheological, mechanical and durability (in terms of chloride penetration resistance) properties of all FRSCC mixtures were evaluated. The influences of fiber types/size/ dosages and fiber combination (used in hybrid mixes) on fresh (slump flow, L-box passing ability, V-funnel flow time and segregation index), rheological (plastic viscosity and yield stress) and hardened (fracture energy and compressive/flexural/splitting tensile strength) properties were critically analyzed to examine the relationships among various properties as well as to suggest suitable FRSCC mixtures. The fibers (especially metallic ones) wre more effective in increasing the fracture energy of FRSCC than compressive/splitting tensile/flexural strength. A fracture energy gain of about 730% was observed (which is substantial) compared to 10% of compressive strength, 39% of splitting tensil strength and 124% of flexural strength. The improved strength and fracture energy of FRSCC mixtures can significantly reduce the amount of tensile reinforcement and subsantially increase the energy absorbing capacity of concrete structures.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Kashif Ali Khan ◽  
Hassan Nasir ◽  
Muhammad Alam ◽  
Sajjad Wali Khan ◽  
Izhar Ahmad ◽  
...  

Advancement in the construction industry causes decline in the availability of natural resources, and this decline can be overcome by utilization of the available raw materials. This study is focused on the combined effects of ethylene vinyl acetate (EVA) and ladle furnace slag (LFS) on fresh and hardened characteristics of self-compacting concrete (SCC) by replacing some fraction of cement and sand. The characteristics of SCC in its fresh state are investigated by workability, while hardened characteristics are investigated by elastic modulus and compressive, tensile, and flexural strength. The findings showed that the workability is enhanced by the incorporation of EVA, while decreased with LFS. Furthermore, all the strength properties were enhanced at all the replacement levels of EVA and LFS except for the splitting tensile strength. The utmost gain in elastic modulus and compressive, tensile, and flexural strength was up to 18, 20, 10, and 15% more by increasing the dosage of LFS while keeping EVA constant.


Sign in / Sign up

Export Citation Format

Share Document