scholarly journals Computation of Density Perturbation and Energy Flux of Internal Waves from Experimental Data

Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 119
Author(s):  
Lucie Bordois ◽  
Jonas Nycander ◽  
Alexandre Paci

We hereby present two different spectral methods for calculating the density anomaly and the vertical energy flux from synthetic Schlieren data, for a periodic field of linear internal waves (IW) in a density-stratified fluid with a uniform buoyancy frequency. The two approaches operate under different assumptions. The first method (hereafter Mxzt) relies on the assumption of a perfectly periodic IW field in the three dimensions (x, z, t), whereas the second method (hereafter MxtUp) assumes that the IW field is periodic in x and t and composed solely of wave components with downward phase velocity. The two methods have been applied to synthetic Schlieren data collected in the CNRM large stratified water flume. Both methods succeed in reconstructing the density anomaly field. We identify and quantify the source of errors of both methods. A new method mixing the two approaches and combining their respective advantages is then proposed for the upward energy flux. The work presented in this article opens new perspectives for density and energy flux estimates from laboratory experiments data.

2017 ◽  
Vol 829 ◽  
pp. 280-303 ◽  
Author(s):  
S. Haney ◽  
W. R. Young

Groups of surface gravity waves induce horizontally varying Stokes drift that drives convergence of water ahead of the group and divergence behind. The mass flux divergence associated with spatially variable Stokes drift pumps water downwards in front of the group and upwards in the rear. This ‘Stokes pumping’ creates a deep Eulerian return flow that sets the isopycnals below the wave group in motion and generates a trailing wake of internal gravity waves. We compute the energy flux from surface to internal waves by finding solutions of the wave-averaged Boussinesq equations in two and three dimensions forced by Stokes pumping at the surface. The two-dimensional (2-D) case is distinct from the 3-D case in that the stratification must be very strong, or the surface waves very slow for any internal wave (IW) radiation at all. On the other hand, in three dimensions, IW radiation always occurs, but with a larger energy flux as the stratification and surface wave (SW) amplitude increase or as the SW period is shorter. Specifically, the energy flux from SWs to IWs varies as the fourth power of the SW amplitude and of the buoyancy frequency, and is inversely proportional to the fifth power of the SW period. Using parameters typical of short period swell (e.g. 8 s SW period with 1 m amplitude) we find that the energy flux is small compared to both the total energy in a typical SW group and compared to the total IW energy. Therefore this coupling between SWs and IWs is not a significant sink of energy for the SWs nor a source for IWs. In an extreme case (e.g. 4 m amplitude 20 s period SWs) this coupling is a significant source of energy for IWs with frequency close to the buoyancy frequency.


2018 ◽  
Vol 856 ◽  
pp. 898-920 ◽  
Author(s):  
Frank M. Lee ◽  
Michael R. Allshouse ◽  
Harry L. Swinney ◽  
Philip J. Morrison

Internal gravity wave energy contributes significantly to the energy budget of the oceans, affecting mixing and the thermohaline circulation. Hence it is important to determine the internal wave energy flux $\boldsymbol{J}=p\,\boldsymbol{v}$, where $p$ is the pressure perturbation field and $\boldsymbol{v}$ is the velocity perturbation field. However, the pressure perturbation field is not directly accessible in laboratory or field observations. Previously, a Green’s function based method was developed to calculate the instantaneous energy flux field from a measured density perturbation field $\unicode[STIX]{x1D70C}(x,z,t)$, given a constant buoyancy frequency $N$. Here we present methods for computing the instantaneous energy flux $\boldsymbol{J}(x,z,t)$ for an internal wave field with vertically varying background $N(z)$, as in the oceans where $N(z)$ typically decreases by two orders of magnitude from the pycnocline to the deep ocean. Analytic methods are presented for computing $\boldsymbol{J}(x,z,t)$ from a density perturbation field for $N(z)$ varying linearly with $z$ and for $N^{2}(z)$ varying as $\tanh (z)$. To generalize this approach to arbitrary $N(z)$, we present a computational method for obtaining $\boldsymbol{J}(x,z,t)$. The results for $\boldsymbol{J}(x,z,t)$ for the different cases agree well with results from direct numerical simulations of the Navier–Stokes equations. Our computational method can be applied to any density perturbation data using the MATLAB graphical user interface ‘EnergyFlux’.


2018 ◽  
Vol 17 (4) ◽  
pp. 727-732 ◽  
Author(s):  
Shuya Wang ◽  
Jinhu Wang ◽  
Xu Chen ◽  
Jing Meng ◽  
Huan Wang

2019 ◽  
Vol 106 (5-6) ◽  
pp. 2227-2241 ◽  
Author(s):  
Patrik Fager ◽  
Martina Calzavara ◽  
Fabio Sgarbossa

AbstractKitting – meaning to supply assembly with components in presorted kits – is widely seen as beneficial for assembly quality and efficiency when there is a multitude of component variants. However, the process by which kits are prepared – the kit preparation – is labour-intensive, and kit errors are problematic at assembly processes. The use of robotics to support kit preparation has received some attention by researchers, but literature is lacking with respect to how collaborative robots – cobots – can support kit preparation activities. The purpose of this paper is to identify the potential of a cobot to support time-efficient batch preparation of kits. To address the purpose, the paper presents a mathematical model for estimation of the cycle time associated with cobot-supported kit preparation. The model is applied in a numerical example with experimental data from laboratory experiments, and cobot-supported kit preparation is compared with manual kit preparation. The findings suggest that cobot-supported kit preparation is beneficial with diverse kits and smaller components quantities per SKU (Stock Keeping Unit) and provides less variability of the outcome, when compared to manual kit preparation. The paper reveals several insights about cobot-supported kit preparation that can be valuable for both academics and practitioners. The model developed can be used by practitioners to assess the potential of cobots to support kit-batch preparation in association with assembly, spare parts, repair and maintenance, or business to business industry.


2001 ◽  
Vol 428 ◽  
pp. 349-386 ◽  
Author(s):  
E. J. STRANG ◽  
H. J. S. FERNANDO

The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. A stratified shear layer, across which a velocity difference ΔU and buoyancy difference Δb is imposed, separates a lighter upper turbulent layer of depth D from a quiescent, deep lower layer which is either homogeneous (two-layer case) or linearly stratified with a buoyancy frequency N (linearly stratified case). In the parameter ranges investigated the flow is mainly determined by two parameters: the bulk Richardson number RiB = ΔbD/ΔU2 and the frequency ratio fN = ND=ΔU.When RiB > 1.5, there is a growing significance of buoyancy effects upon the entrainment process; it is observed that interfacial instabilities locally mix heavy and light fluid layers, and thus facilitate the less energetic mixed-layer turbulent eddies in scouring the interface and lifting partially mixed fluid. The nature of the instability is dependent on RiB, or a related parameter, the local gradient Richardson number Rig = N2L/ (∂u/∂z)2, where NL is the local buoyancy frequency, u is the local streamwise velocity and z is the vertical coordinate. The transition from the Kelvin–Helmholtz (K-H) instability dominated regime to a second shear instability, namely growing Hölmböe waves, occurs through a transitional regime 3.2 < RiB < 5.8. The K-H activity completely subsided beyond RiB ∼ 5 or Rig ∼ 1. The transition period 3.2 < RiB < 5 was characterized by the presence of both K-H billows and wave-like features, interacting with each other while breaking and causing intense mixing. The flux Richardson number Rif or the mixing efficiency peaked during this transition period, with a maximum of Rif ∼ 0.4 at RiB ∼ 5 or Rig ∼ 1. The interface at 5 < RiB < 5.8 was dominated by ‘asymmetric’ interfacial waves, which gradually transitioned to (symmetric) Hölmböe waves at RiB > 5:8.Laser-induced fluorescence measurements of both the interfacial buoyancy flux and the entrainment rate showed a large disparity (as large as 50%) between the two-layer and the linearly stratified cases in the range 1.5 < RiB < 5. In particular, the buoyancy flux (and the entrainment rate) was higher when internal waves were not permitted to propagate into the deep layer, in which case more energy was available for interfacial mixing. When the lower layer was linearly stratified, the internal waves appeared to be excited by an ‘interfacial swelling’ phenomenon, characterized by the recurrence of groups or packets of K-H billows, their degeneration into turbulence and subsequent mixing, interfacial thickening and scouring of the thickened interface by turbulent eddies.Estimation of the turbulent kinetic energy (TKE) budget in the interfacial zone for the two-layer case based on the parameter α, where α = (−B + ε)/P, indicated an approximate balance (α ∼ 1) between the shear production P, buoyancy flux B and the dissipation rate ε, except in the range RiB < 5 where K-H driven mixing was active.


Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.


1994 ◽  
Vol 19 ◽  
pp. 155-157 ◽  
Author(s):  
Lasse Makkonen

A new theory, in which friction is interpreted as the energy flux required to form surface at contact asperities, is applied to sliding on ice and snow. The results of this theoretical investigation show that in dry friction the relevant contact areas are of almost molecular scale. The properties of the interface layer in ice and snow friction arc poorly known, so that the implications of this new theory are somewhat speculative. However, qualitative agreement with experimental data is good, and the theory provides explanations to the success of some empirically developed methods of improving the frictional properties of skis and sledges.


2009 ◽  
Vol 25 (1) ◽  
pp. 129-136 ◽  
Author(s):  
C.-D. Jan ◽  
C.-J. Chang ◽  
J.-S. Lai ◽  
W.-D. Guo

AbstractThis paper presents the experimental results of the characteristics of hydraulic shock waves in an inclined chute contraction with consideration of the effects of sidewall deflection angle φ, bottom inclination angle θ and approach Froude number Fr0. Seventeen runs of laboratory experiments were conducted in the range of 27.45° ≤φ ≤ 40.17°, 6.22° ≤ θ ≤ 25.38° and 1.04 ≤ Fr0 ≤ 3.51. Based on the experimental data, three empirical dimensionless relations for the shock angle, maximum shockwave height, and corresponding position of maximum shockwave were obtained by regression analyses, respectively. These empirical relations would be useful for hydraulic engineers in designing chute contraction structures.


1978 ◽  
Vol 1 (16) ◽  
pp. 87 ◽  
Author(s):  
P. Nielsen ◽  
I.A. Svensen ◽  
C. Staub

A theoretical model is developed for the movement of loose sediments in oscillatory flow with or without a net current. In the present formulation the model is two-dimensional, but may readily be extended to three dimensions. It is assumed that all movement of sediments occurs in suspension, and exact analytical solutions are given for the time variation of the concentration profile, the instantaneous sediment flux and the net flux of sediment over a wave period. The model requires as empirical input a diffusion coefficient e and pick-up function p(t), for which experimental data are presented. Two examples are discussed in detail, illustrating important aspects of the onshore-offshore sediment motion.


1982 ◽  
Vol 104 (1) ◽  
pp. 47-52 ◽  
Author(s):  
A. Murthy ◽  
J. G. Lenard

The accuracy and precision of four mathematial models of varying complexity are evaluated by comparing their predictions to experimental data generated in carefully controlled laboratory experiments and to production logs obtained from the finishing trains of several Canadian, American, and European hot strip mills. The materials rolled are low carbon and HSLA steels; the models used are Orowan’s formulation with Shida’s flow strength and Ford and Alexander’s formulation with Shida’s flow strength; then both these formulations are combined with Ekelund’s flow strength equation. It is concluded that Orowan’s formulation with Shida’s flow strength relation is the most consistently accurate technique of analysis. Further, the behavior of HSLA steels is not well described by either Shida’s or Ekelund’s equations.


Sign in / Sign up

Export Citation Format

Share Document