scholarly journals Development of an Analytical Wall Function for Bypass Transition

Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 328
Author(s):  
Ekachai Juntasaro ◽  
Kiattisak Ngiamsoongnirn ◽  
Phongsakorn Thawornsathit ◽  
Kazuhiko Suga

The objective of the present work is to propose an extended analytical wall function that is capable of predicting the bypass transition from laminar to turbulent flow. The algebraic γ transition model, the k−ω turbulence model and the analytical wall function are integrated together in this work to detect the transition onset and start the transition process. The present analytical wall function is validated with the experimental data, the Blasius solution and the law of the wall. With this analytical wall function, the transition onset in the skin friction coefficient is detected and the growth rate of transition is properly generated. The predicted mean velocity profiles are found to be in good agreement with the Blasius solution in the laminar flow, the experimental data in the transition zone and the law of the wall in the fully turbulent flow.

1969 ◽  
Vol 35 (2) ◽  
pp. 225-241 ◽  
Author(s):  
M. A. Badri Narayanan ◽  
V. Ramjee

Experiments on reverse transition were conducted in two-dimensional accelerated incompressible turbulent boundary layers. Mean velocity profiles, longitudinal velocity fluctuations $\tilde{u}^{\prime}(=(\overline{u^{\prime 2}})^{\frac{1}{2}})$ and the wall-shearing stress (TW) were measured. The mean velocity profiles show that the wall region adjusts itself to laminar conditions earlier than the outer region. During the reverse transition process, increases in the shape parameter (H) are accompanied by a decrease in the skin friction coefficient (Cf). Profiles of turbulent intensity (u’2) exhibit near similarity in the turbulence decay region. The breakdown of the law of the wall is characterized by the parameter \[ \Delta_p (=\nu[dP/dx]/\rho U^{*3}) = - 0.02, \] where U* is the friction velocity. Downstream of this region the decay of $\tilde{u}^{\prime}$ fluctuations occurred when the momentum thickness Reynolds number (R) decreased roughly below 400.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Eduard Amromin

Cavitation within regions of flow separation appears in drifting vortices. A two-part computational method is employed for prediction of cavitation inception number there. The first part is an analysis of the average flow in separation regions without consideration of an impact of vortices. The second part is an analysis of equilibrium of the bubble within the core of a vortex located in the turbulent flow of known average characteristics. Computed cavitation inception numbers for axisymmetric flows are in the good agreement with the known experimental data.


Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1087
Author(s):  
Eslam Reda Lotfy ◽  
Zambri Harun

The inertial sublayer comprises a considerable and critical portion of the turbulent atmospheric boundary layer. The mean windward velocity profile is described comprehensively by the Monin–Obukhov similarity theory, which is equivalent to the logarithmic law of the wall in the wind tunnel boundary layer. Similar logarithmic relations have been recently proposed to correlate turbulent velocity variances with height based on Townsend’s attached-eddy theory. The theory is particularly valid for high Reynolds-number flows, for example, atmospheric flow. However, the correlations have not been thoroughly examined, and a well-established model cannot be reached for all turbulent variances similar to the law of the wall of the mean-velocity. Moreover, the effect of atmospheric thermal condition on Townsend’s model has not been determined. In this research, we examined a dataset of free wind flow under a near-neutral range of atmospheric stability conditions. The results of the mean velocity reproduce the law of the wall with a slope of 2.45 and intercept of −13.5. The turbulent velocity variances were fitted by logarithmic profiles consistent with those in the literature. The windward and crosswind velocity variances obtained the average slopes of −1.3 and −1.7, respectively. The slopes and intercepts generally increased away from the neutral state. Meanwhile, the vertical velocity and temperature variances reached the ground-level values of 1.6 and 7.8, respectively, under the neutral condition. The authors expect this article to be a groundwork for a general model on the vertical profiles of turbulent statistics under all atmospheric stability conditions.


2014 ◽  
Vol 757 ◽  
pp. 498-513 ◽  
Author(s):  
Carlo Zúñiga Zamalloa ◽  
Henry Chi-Hin Ng ◽  
Pinaki Chakraborty ◽  
Gustavo Gioia

AbstractUnlike the classical scaling relations for the mean-velocity profiles of wall-bounded uniform turbulent flows (the law of the wall, the defect law and the log law), which are predicated solely on dimensional analysis and similarity assumptions, scaling relations for the turbulent-energy spectra have been informed by specific models of wall turbulence, notably the attached-eddy hypothesis. In this paper, we use dimensional analysis and similarity assumptions to derive three scaling relations for the turbulent-energy spectra, namely the spectral analogues of the law of the wall, the defect law and the log law. By design, each spectral analogue applies in the same spatial domain as the attendant scaling relation for the mean-velocity profiles: the spectral analogue of the law of the wall in the inner layer, the spectral analogue of the defect law in the outer layer and the spectral analogue of the log law in the overlap layer. In addition, as we are able to show without invoking any model of wall turbulence, each spectral analogue applies in a specific spectral domain (the spectral analogue of the law of the wall in the high-wavenumber spectral domain, where viscosity is active, the spectral analogue of the defect law in the low-wavenumber spectral domain, where viscosity is negligible, and the spectral analogue of the log law in a transitional intermediate-wavenumber spectral domain, which may become sizable only at ultra-high$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau }$), with the implication that there exist model-independent one-to-one links between the spatial domains and the spectral domains. We test the spectral analogues using experimental and computational data on pipe flow and channel flow.


1997 ◽  
Vol 119 (3) ◽  
pp. 433-439 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

The standard turbulent law of the wall, devised for zero pressure gradient flows, has been previously shown to be inadequate for accelerating and decelerating turbulent boundary layers. In this paper, formulations for mean velocity profiles from the literature are applied and formulations for the temperature profiles are developed using a mixing length model. These formulations capture the effects of pressure gradients by including the convective and pressure gradient terms in the momentum and energy equations. The profiles which include these terms deviate considerably from the standard law of the wall; the temperature profiles more so than the velocity profiles. The new profiles agree well with experimental data. By looking at the various terms separately, it is shown why the velocity law of the wall is more robust to streamwise pressure gradients than is the thermal law of the wall. The modification to the velocity profile is useful for evaluation of more accurate skin friction coefficients from experimental data by the near-wall fitting technique. The temperature profile modification improves the accuracy with which one may extract turbulent Prandtl numbers from near-wall mean temperature data when they cannot be determined directly.


1970 ◽  
Vol 42 (2) ◽  
pp. 411-427 ◽  
Author(s):  
Kirit S. Yajnik

A theory is proposed in this paper to describe the behaviour of a class of turbulent shear flows as the Reynolds number approaches infinity. A detailed analysis is given for simple representative members of this class, such as fully developed channel and pipe flows and two-dimensional turbulent boundary layers. The theory considers an underdetermined system of equations and depends critically on the idea that these flows consist of two rather different types of regions. The method of matched asymptotic expansions is employed together with asymptotic hypotheses describing the order of various terms in the equations of mean motion and turbulent kinetic energy. As these hypotheses are not closure hypotheses, they do not impose any functional relationship between quantities determined by the mean velocity field and those determined by the Reynolds stress field. The theory leads to asymptotic laws corresponding to the law of the wall, the logarithmic law, the velocity defect law, and the law of the wake.


1995 ◽  
Vol 117 (3) ◽  
pp. 535-538 ◽  
Author(s):  
James Sucec

The inner law for transpired turbulent boundary layers is used as the velocity profile in the integral form of the x momentum equation. The resulting ordinary differential equation is solved numerically for the skin friction coefficient, as well as boundary layer thicknesses, as a function of position along the surface. Predicted skin friction coefficients are compared to experimental data and exhibit reasonably good agreement with the data for a variety of different cases. These include blowing and suction, with constant blowing fractions F for both mild and severe acceleration. Results are also presented for more complicated cases where F varies with x along the surface.


The ‘law of the wall’ for the inner part of a turbulent shear flow over a solid surface is one of the cornerstones of fluid dynamics, and one of the very few pieces of turbulence theory whose results include a simple analytic function for the mean velocity distribution, the logarithmic law. Various aspects of the law have recently been questioned, and this paper is a summary of the present position. Although the law of the wall for velocity has apparently been confirmed by experiment well outside its original range, the law of the wall for temperature seems to apply only to very simple flows. Since the two laws are derived by closely analogous arguments this throws suspicion on the law of the wall for velocity. Analysis of simulation data, for all the Reynolds stresses including the shear stress, shows that law-of-the-wall scaling fails spectacularly in the viscous wall region, even when the logarithmic law is relatively well behaved. Virtually all turbulence models are calibrated to reproduce the law of the wall in simple flows, and we discuss whether, in practice or in principle, their range of validity is larger than that of the law of the wall itself: the present answer is that it is not; so that when the law of the wall (or the mixing-length formula) fails, current Reynolds-averaged turbulence models are likely to fail too.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012214
Author(s):  
A S Stabnikov ◽  
D K Kolmogorov ◽  
A V Garbaruk ◽  
F R Menter

Abstract Direct numerical simulation (DNS) of the separated flow in axisymmetric CS0 diffuser is conducted. The obtained results are in a good agreement with experimental data of Driver and substantially supplement them. Along with other data, eddy viscosity extracted from performed DNS could be used for RANS turbulence model improvement.


Sign in / Sign up

Export Citation Format

Share Document