scholarly journals Multi-Statistical Approach for the Study of Volatile Compounds of Industrial Spoiled Manzanilla Spanish-Style Table Olive Fermentations

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1182
Author(s):  
Antonio Garrido-Fernández ◽  
Alfredo Montaño ◽  
Amparo Cortés-Delgado ◽  
Francisco Rodríguez-Gómez ◽  
Francisco Noé Arroyo-López

Table olives can suffer different types of spoilage during fermentation. In this work, a multi-statistical approach (standard and compositional data analysis) was used for the study of the volatile organic compounds (VOCs) associated with altered (butyric, sulfidic, and putrid) and non-altered (normal) Manzanilla Spanish-style table olive fermentations. Samples were collected from two industrial fermentation yards in Seville (Spain) in the 2019/2020 season. The VOC profiles of altered (n = 4) and non-altered (n = 6) samples were obtained by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Ninety-one VOCs were identified and grouped into alcohols (30), esters (21), carbonyl compounds (12), acids (10), terpenes (6), phenols (6), sulfur compounds (2), and others (4). The association of the VOCs with spoilage samples depended on the standard or compositional statistical methodology used. However, butyric spoilage was strongly linked by several techniques to methyl butanoate, ethyl butanoate, and butanoic acid; sulfidic spoilage with 2-propyl-1-pentanol, dimethyl sulfide, methanol, 2-methylbutanal, 2-methyl-2-butenal, ethanol, 2-methyl-3-buten-2-ol, and isopentanol, while putrid was mainly related to D-limonene and 2-pentanol. Our data contribute to a better characterisation of non-zapatera spoiled table olive fermentations and show the convenience of using diverse statistical techniques for a most robust selection of spoilage VOC markers.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huimin Zhang ◽  
Hongguang Yan ◽  
Quan Li ◽  
Hui Lin ◽  
Xiaopeng Wen

AbstractThe floral fragrance of plants is an important indicator in their evaluation. The aroma of sweet cherry flowers is mainly derived from their essential oil. In this study, based on the results of a single-factor experiment, a Box–Behnken design was adopted for ultrasound- and microwave-assisted extraction of essential oil from sweet cherry flowers of the Brooks cultivar. With the objective of extracting the maximum essential oil yield (w/w), the optimal extraction process conditions were a liquid–solid ratio of 52 mL g−1, an extraction time of 27 min, and a microwave power of 435 W. The essential oil yield was 1.23%, which was close to the theoretical prediction. The volatile organic compounds (VOCs) of the sweet cherry flowers of four cultivars (Brooks, Black Pearl, Tieton and Summit) were identified via headspace solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). The results showed that a total of 155 VOCs were identified and classified in the essential oil from sweet cherry flowers of four cultivars, 65 of which were shared among the cultivars. The highest contents of VOCs were aldehydes, alcohols, ketones and esters. Ethanol, linalool, lilac alcohol, acetaldehyde, (E)-2-hexenal, benzaldehyde and dimethyl sulfide were the major volatiles, which were mainly responsible for the characteristic aroma of sweet cherry flowers. It was concluded that the VOCs of sweet cherry flowers were qualitatively similar; however, relative content differences were observed in the four cultivars. This study provides a theoretical basis for the metabolism and regulation of the VOCs of sweet cherry flowers.


2015 ◽  
Vol 53 (3) ◽  
pp. 1009-1011 ◽  
Author(s):  
Timothy J. J. Inglis ◽  
Dorothee R. Hahne ◽  
Adam J. Merritt ◽  
Michael W. Clarke

Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced byBurkholderia pseudomalleiis responsible for its unusual truffle-like smell and distinguishes the species fromBurkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grownB. pseudomallei.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1166
Author(s):  
Veronica Lolli ◽  
Animesh Acharjee ◽  
Donato Angelino ◽  
Michele Tassotti ◽  
Daniele Del Rio ◽  
...  

Coffee capsules market is on the rise as it allows access to a wide selection of coffee, differing in taste and brand. However, few data about the chemical characterization of the capsule-brewed coffee aroma are available. In this work, an untargeted approach using headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–mass spectrometry (GC-MS) and combined to chemometrics was performed to study and compare aroma profile from 65 capsule-brewed espresso coffees (ECs) commercialized by five of the most representative brands in Italy. Volatile profiles obtained from ECs were subjected to multivariate statistical analysis, which generally did not show a significant variability among coffees belonging to the same brand, except for those modified after the addition of specific flavor additives or aromatic substances (such as caramel, chocolate, etc.). Similarities may be related to the starting coffee brew or the processing method, which is likely the same for each individual brand. Additionally, partial least squares discriminant analysis (PLS-DA) showed that capsules from a specific brand contain the highest concentration of pyrazines, thus characterized by an intense and characteristic aroma, and a stronger note than those from the other brands. This study supports that the chemical analysis in conjunction with chemometric tools is a useful approach for assessing flavor quality, even if the need remains to identify volatile markers of high-quality beverages.


2008 ◽  
Vol 91 (6) ◽  
pp. 1409-1415 ◽  
Author(s):  
Rosa Ana Pérez ◽  
Maria Dolores Rojo ◽  
Gema Gonzlez ◽  
Cristina De Lorenzo

Abstract A method using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry was developed and applied to the determination of volatile compounds generated in meat, at different times, from ground beef stored under refrigeration. Selection of the extractive fiber, extraction time, and headspace (HS) or direct extraction was optimized for the determination of volatile compounds from ground meat. Various fibers were investigated, and carboxen/polydimethylsiloxane was selected for these analyses. The HS analysis of the solid sample by HS-SPME produced a higher volatile signal than did direct-SPME. The meat samples were stored under refrigeration and analyzed after 0, 3, and 6 days of storage. These analyses at different times showed important changes in the volatile profile of the evaluated samples. The ketones 3-hydroxy-2-butanone and 2,3-butanedione, and the alcohol 3-methyl-1-butanol were the most representative compounds generated during the meat storage. In general, compounds associated with a butter off-flavor were detected during the storage of raw ground beef.


2020 ◽  
pp. 096228022095522
Author(s):  
D Dumuid ◽  
JA Martín-Fernández ◽  
S Ellul ◽  
RS Kenett ◽  
M Wake ◽  
...  

Human body composition is made up of mutually exclusive and exhaustive parts (e.g. %truncal fat, %non-truncal fat and %fat-free mass) which are constrained to sum to the same total (100%). In statistical analyses, individual parts of body composition (e.g. %truncal fat or %fat-free mass) have traditionally been used as proxies for body composition, and have been linked with a range of health outcomes. But analysis of individual parts omits information about the other parts, which are intrinsically co-dependent because of the constant sum constraint of 100%. Further, body mass may be associated with health outcomes. We describe a statistical approach for body composition based on compositional data analysis. The body composition data are expressed as logratios to allow relative information about all the compositional parts to be explored simultaneously in relation to health outcomes. We describe a recent extension to the logratio approach to compositional data analysis which allows absolute information about the total of the compositional parts (body mass) to be considered alongside relative information about body composition. The statistical approach is illustrated by an example that explores the relationships between adults’ body composition, body mass and bone strength.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1321
Author(s):  
Jorge Freitas ◽  
Pedro Silva ◽  
Paulo Vaz-Pires ◽  
José S. Câmara

The volatile amines trimethylamine (TMA) and dimethylamine (DMA) could be used as important spoilage indices for seafood products, assisting in the determination of the rejection period. In the present study, a systematic analytical duality-by-design (AQbD) approach was used as a powerful strategy to optimize the most important experimental parameters of headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) conditions for the quantification of TMA and DMA in Sparus aurata. This optimization enabled the selection of the best points in the method operable design region for HS-SPME extraction (30 min; 35 °C; NaOH 15 M and NaCl 35%, w/v) and GC-MS analysis (80 °C; gradient 50 °C/min; flow rate 1 mL/min and splitless mode). The rejection day, estimated through the TMA concentration (>12 mg/100 g, at days 9–10), was compared with sensory (quality index method: day 7–8), physical (Torrymeter: day 8–9), and microbial (day 9–10) analysis, corroborating the suitability of the proposed approach for estimating the period for which they will retain an acceptable level of eating quality from a safety and sensory perspective.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonio Benítez-Cabello ◽  
Verónica Romero-Gil ◽  
Eduardo Medina-Pradas ◽  
Antonio Garrido-Fernández ◽  
Francisco Noé Arroyo-López

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3305 ◽  
Author(s):  
Tao Feng ◽  
Mengzhu Shui ◽  
Shiqing Song ◽  
Haining Zhuang ◽  
Min Sun ◽  
...  

The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC–MS) and gas chromatography with flame photometric detection (GC-FPD). The results showed that 44, 43 and 44 volatile compounds were detected in T1, T2 and T3 samples, respectively. In addition, 9, 10 and 9 sulfur compounds were identified in three samples by GC-FPD, respectively. Combining physicochemical and sensory properties, T1 presented fatty, green and rotten cabbage odor; T2 exhibited mushroom, sulfuric and musty odor notes; T3 had nutty, floral and roasted potato odor. Dimethyl sulfide, 3-methylbutanal, dimethyl disulfide, 3-octanone, bis(methylthio) methane, octanal, 1-octen-3-one, 1-octen-3-ol and benzeneacetaldehyde played indispensable roles in the overall aroma of three truffles. Finally, based on quantitative concentration in T1, odorous compounds (OAV) > 1 were mixed to recombine aroma, demonstrating that these key aroma compounds based on OAV can successfully recombine pretty similar aroma of each variety.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6177
Author(s):  
Samantha Reale ◽  
Alessandra Biancolillo ◽  
Chiara Gasparrini ◽  
Luciano Di Di Martino ◽  
Valter Di Di Cecco ◽  
...  

Dried and ground red pepper is a spice used as seasoning in various traditional dishes all over the world; nevertheless, the pedoclimatic conditions of the diverse cultivation areas provide different chemical characteristics, and, consequently, diverse organoleptic properties to this product. In the present study, the volatile profiles of 96 samples of two different ground bell peppers harvested in diverse Italian geographical areas, Altino (Abruzzo) and Senise (Lucania), and a commercial sweet paprika, have been studied by means of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The investigation of their volatile profile has led to the identification of 59 analytes. Eventually, a discriminant classifier, Partial Least Squares Discriminant Analysis (PLS-DA), was exploited to discriminate samples according to their geographical origin. The model provided very accurate results in external validation; in fact, it correctly classified all the 30 test samples, achieving 100% correct classification (on the validation set). Furthermore, in order to understand which volatiles contribute the most at differentiating the bell peppers from the different origins, a variable selection approach, Variable Importance in Projection (VIP), was used. This strategy led to the selection of sixteen diverse compounds which characterize the different bell pepper spices.


2012 ◽  
Vol 1 (3) ◽  
pp. 219 ◽  
Author(s):  
Sanping Fang ◽  
Biao Pu ◽  
Anjun Chen ◽  
Kang Zhou ◽  
Xiaolin Ao ◽  
...  

<p class="keywords">The aim of the present investigation is to fully characterize the aroma of Chinese truffles (Tuber indicum) by headspace solid phase microextraction (HS-SPME). To develop an objective method to extract aroma compounds, four different fibers were studied and a Box-Behnken design (BBD) was applied. From the statistical analysis of the experimental result, it was able to determine that the most important factor was the extraction temperature and the optimum extraction conditions were as follows: extraction time 20.6 min, extraction temperature 52.4 <sup>o</sup>C and equilibrium time 6.8 min, By using gas chromatography mass spectrometry (GC-MS) analysis under the optimal conditions, it identified 24 compounds, three of which were reported for the first time in the Chinese truffle: 2-methylpropanal, 2,3-butanedione, 2-nonanone. And we found that the highest content compound was dimethyl sulfide, followed by 3-methylbutanal, 2-methylbutanal, 2-butanol and 1-pentanol, 1-octen-3-ol, all of those compounds were previously described as characteristic aroma of truffle.</p>


Sign in / Sign up

Export Citation Format

Share Document