scholarly journals Mechanisms Involved in Interspecific Communication between Wine Yeasts

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1734
Author(s):  
Ana Mencher ◽  
Pilar Morales ◽  
Jordi Tronchoni ◽  
Ramon Gonzalez

In parallel with the development of non-Saccharomyces starter cultures in oenology, a growing interest has developed around the interactions between the microorganisms involved in the transformation of grape must into wine. Nowadays, it is widely accepted that the outcome of a fermentation process involving two or more inoculated yeast species will be different from the weighted average of the corresponding individual cultures. Interspecific interactions between wine yeasts take place on several levels, including interference competition, exploitation competition, exchange of metabolic intermediates, and others. Some interactions could be a simple consequence of each yeast running its own metabolic programme in a context where metabolic intermediates and end products from other yeasts are present. However, there are clear indications, in some cases, of specific recognition between interacting yeasts. In this article we discuss the mechanisms that may be involved in the communication between wine yeasts during alcoholic fermentation.

1991 ◽  
Vol 21 (7) ◽  
pp. 1029-1036 ◽  
Author(s):  
L. J. Rankin ◽  
J. H. Borden

The pine engraver (PE), Ipspini (Say), often coexists with the mountain pine beetle (MPB), Dendroctonusponderosae Hopk., in lodgepole pine, Pinuscontorta var. latifolia Engelm. The PE colonizes the upper bole, while the MPB infests the lower bole. We investigated the hypothesis that interspecific interactions between the PE and the MPB within trees can adversely affect MPB progeny production or survival. In lodgepole pine bark attacked by both species, PE and MPB emergence holes had a strong negative interrelationship, suggesting that high numbers of one species resulted in lower numbers of the other. In the laboratory, attacks by PEs on lodgepole pine logs resulted in significantly decreased numbers of MPB progeny, particularly when MPBs and PEs were allowed to attack logs simultaneously. Reductions in MPB progeny were 92.8 and 96.2% when the ratios of attacking beetles were 100 PE: 50 MPB per square metre and 200 PE: 50 MPB per square metre, respectively, compared with that in control logs with 50 MPB per square metre. In an August field experiment, pheromone-induced attack by the PE on trees just attacked by the MPB resulted in a 72.5% reduction in mean MPB progeny production compared with that in MPB-attacked control trees. Possible reasons for the reduced success of MPB when it and the PE coinhabit the same host may be exploitation competition, interference competition, or introduction of fungal competitors deleterious to the MPB. Induced infestation by PEs of MPB-infested trees may have the potential to reduce or control MPB populations.


2007 ◽  
Vol 73 (8) ◽  
pp. 2432-2439 ◽  
Author(s):  
Carole Guillaume ◽  
Pierre Delobel ◽  
Jean-Marie Sablayrolles ◽  
Bruno Blondin

ABSTRACT Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
João Drumonde-Neves ◽  
Ticiana Fernandes ◽  
Teresa Lima ◽  
Célia Pais ◽  
Ricardo Franco-Duarte

ABSTRACT Non-Saccharomyces yeast species are nowadays recognized for their impact on wine´s chemical composition and sensorial properties. In addition, new interest has been given to the commercial exploitation of non-Saccharomyces starter cultures in the wine sector. However, over many years, these yeast species were considered sources of contamination in wine production and conservation, mainly due to the high levels of volatile acidity obtained. The present manuscript systematizes 80 years of literature describing non-Saccharomyces yeast species isolated from grapes and/or grape musts. A link between each reference, the accepted taxonomic name of each species and their geographical occurrence is presented, compiling information for 293 species, in a total of 231 citations. One major focus of this work relates to the isolation of non-Saccharomyces yeasts from grapevines usually ignored in most sampling studies, also as isolation from damaged grapes. These particular niches are sources of specific yeast species, which are not identified in most other explored environments. These yeasts have high potential to be explored for important and diversified biotechnological applications.


2018 ◽  
Vol 285 (1880) ◽  
pp. 20180744 ◽  
Author(s):  
Yifan Pei ◽  
Mihai Valcu ◽  
Bart Kempenaers

Being active at different times facilitates the coexistence of functionally similar species. Hence, time partitioning might be induced by competition. However, the relative importance of direct interference and indirect exploitation competition on time partitioning remains unclear. The aim of this study was to investigate the relative importance of these two forms of competition on the occurrence of time-shifting among avian predator species. As a measure of interference competition pressure, we used the species richness of day-active avian predator species or of night-active avian predator species (i.e. species of Accipitriformes, Falconiformes and Strigiformes) in a particular geographical area (assemblage). As an estimate of exploitation competition pressure, we used the total species richness of avian predators in each assemblage. Estimates of the intensity of interference competition robustly predicted the number of Accipitriformes species that became crepuscular and the number of Strigiformes species that became day-active or strictly crepuscular. Interference competition pressure may depend on body size and on the total duration of the typical active period (day or night length). Our results support—to some extent—that smaller species are more likely to become time-shifters. Day length did not have an effect on the number of time-shifter species in the Accipitriformes. Among the large Strigiformes, more time-shifter species occur in areas where nights are shorter (i.e. where less of the typical time resource is available). However, in the small Strigiformes, we found the opposite, counterintuitive effect: more time-shifters where nights are longer. Exploitation competition may have had an additional positive effect on the number of time-shifters, but only in Accipitriformes, and the effect was not as robust. Our results thus support the interference competition hypothesis, suggesting that animals may have shifted their time of activity, despite phylogenetic constraints on the ability to do so, to reduce the costs of direct interactions. Our findings also highlight the influence of body size as a surrogate of competitive ability during encounters on time partitioning, at least among avian predators.


2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Reed M. Stubbendieck ◽  
Daniel S. May ◽  
Marc G. Chevrette ◽  
Mia I. Temkin ◽  
Evelyn Wendt-Pienkowski ◽  
...  

ABSTRACTResources available in the human nasal cavity are limited. Therefore, to successfully colonize the nasal cavity, bacteria must compete for scarce nutrients. Competition may occur directly through interference (e.g., antibiotics) or indirectly by nutrient sequestration. To investigate the nature of nasal bacterial competition, we performed coculture inhibition assays between nasalActinobacteriaandStaphylococcusspp. We found that isolates of coagulase-negative staphylococci (CoNS) were sensitive to growth inhibition byActinobacteriabut thatStaphylococcus aureusisolates were resistant to inhibition. AmongActinobacteria, we observed thatCorynebacteriumspp. were variable in their ability to inhibit CoNS. We sequenced the genomes of 10Corynebacteriumspecies isolates, including 3Corynebacterium propinquumisolates that strongly inhibited CoNS and 7 otherCorynebacteriumspecies isolates that only weakly inhibited CoNS. Using a comparative genomics approach, we found that theC. propinquumgenomes were enriched in genes for iron acquisition and harbored a biosynthetic gene cluster (BGC) for siderophore production, absent in the noninhibitoryCorynebacteriumspecies genomes. Using a chrome azurol S assay, we confirmed thatC. propinquumproduced siderophores. We demonstrated that iron supplementation rescued CoNS from inhibition byC. propinquum, suggesting that inhibition was due to iron restriction through siderophore production. Through comparative metabolomics and molecular networking, we identified the siderophore produced byC. propinquumas dehydroxynocardamine. Finally, we confirmed that the dehydroxynocardamine BGC is expressedin vivoby analyzing human nasal metatranscriptomes from the NIH Human Microbiome Project. Together, our results suggest that bacteria produce siderophores to compete for limited available iron in the nasal cavity and improve their fitness.IMPORTANCEWithin the nasal cavity, interference competition through antimicrobial production is prevalent. For instance, nasalStaphylococcusspecies strains can inhibit the growth of other bacteria through the production of nonribosomal peptides and ribosomally synthesized and posttranslationally modified peptides. In contrast, bacteria engaging in exploitation competition modify the external environment to prevent competitors from growing, usually by hindering access to or depleting essential nutrients. As the nasal cavity is a nutrient-limited environment, we hypothesized that exploitation competition occurs in this system. We determined thatCorynebacterium propinquumproduces an iron-chelating siderophore, and this iron-sequestering molecule correlates with the ability to inhibit the growth of coagulase-negative staphylococci. Furthermore, we found that the genes required for siderophore production are expressedin vivo. Thus, although siderophore production by bacteria is often considered a virulence trait, our work indicates that bacteria may produce siderophores to compete for limited iron in the human nasal cavity.


2016 ◽  
Vol 62 (3-4) ◽  
pp. 171-177 ◽  
Author(s):  
Ling-Ying Shuai ◽  
Yan-Ling Song ◽  
Burt P. Kotler ◽  
Keren Embar ◽  
Zhi-Gao Zeng

We studied the foraging behaviour of two sympatric rodents (Meriones meridianus and Dipus sagitta) in the Gobi Desert, Northwestern China. The role of the foraging behaviour in promoting species coexistence was also examined. We used giving-up densities (GUDs) in artificial food patches to measure the patch use of rodents and video trapping to directly record the foraging behaviour, vigilance, and interspecific interactions. Three potential mechanisms of coexistence were evaluated (1) microhabitat partitioning; (2) spatial heterogeneity of resource abundance with a tradeoff in foraging efficiency vs. locomotion; and (3) temporal partitioning on a daily scale. Compared to M. meridianus, D. sagitta generally possessed lower GUDs, spent more time on patches, and conducted more visits per tray per capita, regardless of microhabitat. However, M. meridianus possessed advantages in average harvesting rates and direct interference against D. sagitta. Our results only partly support the third mechanism listed above. We propose another potential mechanism of coexistence: a tradeoff between interference competition and safety, with M. meridianus better at interference competition and D. sagitta better at avoiding predation risk. This mechanism is uncommon in previously studied desert rodent systems.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1373
Author(s):  
Yurena Navarro ◽  
María-Jesús Torija ◽  
Albert Mas ◽  
Gemma Beltran

The use of controlled mixed inocula of Saccharomyces cerevisiae and non-Saccharomyces yeasts is a common practice in winemaking, with Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima being the most commonly used non-Saccharomyces species. Although S. cerevisiae is usually the dominant yeast at the end of mixed fermentations, some non-Saccharomyces species are also able to reach the late stages; such species may not grow in culture media, which is a status known as viable but non-culturable (VBNC). Thus, an accurate methodology to properly monitor viable yeast population dynamics during alcoholic fermentation is required to understand microbial interactions and the contribution of each species to the final product. Quantitative PCR (qPCR) has been found to be a good and sensitive method for determining the identity of the cell population, but it cannot distinguish the DNA from living and dead cells, which can overestimate the final population results. To address this shortcoming, viability dyes can be used to avoid the amplification and, therefore, the quantification of DNA from non-viable cells. In this study, we validated the use of PMAxx dye (an optimized version of propidium monoazide (PMA) dye) coupled with qPCR (PMAxx-qPCR), as a tool to monitor the viable population dynamics of the most common yeast species used in wine mixed fermentations (S. cerevisiae, T. delbrueckii, L. thermotolerans and M. pulcherrima), comparing the results with non-dyed qPCR and colony counting on differential medium. Our results showed that the PMAxx-qPCR assay used in this study is a reliable, specific and fast method for quantifying these four yeast species during the alcoholic fermentation process, being able to distinguish between living and dead yeast populations. Moreover, the entry into VBNC status was observed for the first time in L. thermotolerans and S. cerevisiae during alcoholic fermentation. Further studies are needed to unravel which compounds trigger this VBNC state during alcoholic fermentation in these species, which would help to better understand yeast interactions.


Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
María José Valera ◽  
Eduardo Boido ◽  
Eduardo Dellacassa ◽  
Francisco Carrau

Hanseniaspora species can be isolated from grapes and grape musts, but after the initiation of spontaneous fermentation, they are displaced by Saccharomyces cerevisiae. Hanseniaspora vineae is particularly valuable since this species improves the flavour of wines and has an increased capacity to ferment relative to other apiculate yeasts. Genomic, transcriptomic, and metabolomic studies in H. vineae have enhanced our understanding of its potential utility within the wine industry. Here, we compared gene sequences of 12 glycolytic and fermentation pathway enzymes from five sequenced Hanseniaspora species and S. cerevisiae with the corresponding enzymes encoded within the two sequenced H. vineae genomes. Increased levels of protein similarity were observed for enzymes of H. vineae and S. cerevisiae, relative to the remaining Hanseniaspora species. Key differences between H. vineae and H. uvarum pyruvate kinase enzymes might explain observed differences in fermentative capacity. Further, the presence of eight putative alcohol dehydrogenases, invertase activity, and sulfite tolerance are distinctive characteristics of H. vineae, compared to other Hanseniaspora species. The definition of two clear technological groups within the Hanseniaspora genus is discussed within the slow and fast evolution concept framework previously discovered in these apiculate yeasts.


2020 ◽  
Vol 8 (7) ◽  
pp. 1038 ◽  
Author(s):  
Javier Vicente ◽  
Javier Ruiz ◽  
Ignacio Belda ◽  
Iván Benito-Vázquez ◽  
Domingo Marquina ◽  
...  

Over the last decade, several non-Saccharomyces species have been used as an alternative yeast for producing wines with sensorial properties that are distinctive in comparison to those produced using only Saccharomyces cerevisiae as the classical inoculum. Among the non-Saccharomyces wine yeasts, Metschnikowia is one of the most investigated genera due to its widespread occurrence and its impact in winemaking, and it has been found in grapevine phyllospheres, fruit flies, grapes, and wine fermentations as being part of the resident microbiota of wineries and wine-making equipment. The versatility that allows some Metschnikowia species to be used for winemaking relies on an ability to grow in combination with other yeast species, such as S. cerevisiae, during the first stages of wine fermentation, thereby modulating the synthesis of secondary metabolites during fermentation in order to improve the sensory profile of the wine. Metschnikowia exerts a moderate fermentation power, some interesting enzymatic activities involving aromatic and color precursors, and potential antimicrobial activity against spoilage yeasts and fungi, resulting in this yeast being considered an interesting tool for use in the improvement of wine quality. The abovementioned properties have mostly been determined from studies on Metschnikowia pulcherrima wine strains. However, M. fructicola and M. viticola have also recently been studied for winemaking purposes.


Sign in / Sign up

Export Citation Format

Share Document