scholarly journals Raman Fingerprints of Rice Nutritional Quality: A Comparison between Japanese Koshihikari and Internationally Renowned Cultivars

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2936
Author(s):  
Giuseppe Pezzotti ◽  
Wenliang Zhu ◽  
Yuuki Hashimoto ◽  
Elia Marin ◽  
Takehiro Masumura ◽  
...  

Raman spectroscopy was applied to characterize at the molecular scale the nutritional quality of the Japanese Koshihikari rice cultivar in comparison with other renowned rice cultivars including Carnaroli from Italy, Calrose from the USA, Jasmine rice from Thailand, and Basmati from both India and Pakistan. For comparison, two glutinous (mochigome) cultivars were also investigated. Calibrated and validated Raman analytical algorithms allowed quantitative determinations of: (i) amylopectin and amylose concentrations, (ii) fractions of aromatic amino acids, and (iii) protein content and secondary structure. The Raman assessments non-destructively linked the molecular composition of grains to key nutritional parameters and revealed a complex intertwine of chemical properties. The Koshihikari cultivar was rich in proteins (but with low statistical relevance as compared to other investigated cultivars) and aromatic amino acids. However, it also induced a clearly higher glycemic impact as compared to long-grain cultivars from Asian countries. Complementary to genomics and wet-chemistry analyses, Raman spectroscopy makes non-destructively available factual and data-driven information on rice nutritional characteristics, thus providing customers, dietitian nutritionists, and producers with a solid science-consolidated platform.

2016 ◽  
Vol 3 (12) ◽  
pp. 1699-1704 ◽  
Author(s):  
Nicola Zanna ◽  
Andrea Merlettini ◽  
Claudia Tomasini

Nine amino acids with different chemical properties have been chosen to promote the formation of hydrogels based on the bolamphiphilic gelator A: three basic amino acids (arginine, histidine and lysine), one acidic amino acid (aspartic acid), two neutral aliphatic amino acids (alanine and serine) and three neutral aromatic amino acids (phenylalanine, tyrosine and tryptophan).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaymus Contorno ◽  
Richard E. Darienzo ◽  
Rina Tannenbaum

AbstractThe scope of the work undertaken in this paper was to explore the feasibility and reliability of using the Raman signature of aromatic amino acids as a marker in the detection of the presence of breast cancer and perhaps, even the prediction of cancer development in very early stages of cancer onset. To be able to assess this hypothesis, we collected most recent and relevant literature in which Raman spectroscopy was used as an analytical tool in the evaluation of breast cell lines and breast tissue, re-analyzed all the Raman spectra, and extracted all spectral bands from each spectrum that were indicative of aromatic amino acids. The criteria for the consideration of the various papers for this study, and hence, the inclusion of the data that they contained were two-fold: (1) The papers had to focus on the characterization of breast tissue with Raman spectroscopy, and (2) the spectra provided within these papers included the spectral range of 500–1200 cm−1, which constitutes the characteristic region for aromatic amino acid vibrational modes. After all the papers that satisfied these criteria were collected, the relevant spectra from each paper were extracted, processed, normalized. All data were then plotted without bias in order to decide whether there is a pattern that can shed light on a possible diagnostic classification. Remarkably, we have been able to demonstrate that cancerous breast tissues and cells decidedly exhibit overexpression of aromatic amino acids and that the difference between the extent of their presence in cancerous cells and healthy cells is overwhelming. On the basis of this analysis, we conclude that it is possible to use the signature Raman bands of aromatic amino acids as a biomarker for the detection, evaluation and diagnosis of breast cancer.


2010 ◽  
Vol 14 (5) ◽  
pp. 889-895 ◽  
Author(s):  
Sangmi Kim ◽  
Lisa A DeRoo ◽  
Dale P Sandler

AbstractObjectiveTo identify major meal and snack eating patterns, and examine their relationships with sleep duration.DesignThe analyses included 27 983 participants in a prospective cohort study of women aged 35 to 74 years in the USA or Puerto Rico.ResultsThe principal component analysis of eight meal and snack frequency items at different times across the day yielded two major eating patterns: (i) eating during conventional eating hours (defined as times from breakfast to dinner); and (ii) dominance of snacks over meals. Comparing the identified eating patterns among women with varying sleep duration (<5, 5–5·9, 6–6·9, 7–7·9, 8–8·9, 9–9·9 and ≥10 h daily), the tendency for eating during conventional eating hours decreased with decreasing sleep duration: adjusted mean score of −0·54 (95 % CI –0·68, –0·41) in women sleeping for <5 h daily v. 0·08 (95 % CI 0·06, 0·11) among those with 7–7·9 h of sleep daily. The extent of snack dominance over meals increased in women with shorter sleep. Women with long (≥10 h) sleep duration had eating patterns similar to those with short (<6 h) sleep duration. Lower tendency for eating during conventional eating hours and greater snack dominance over meals were also related to higher intakes of fat and sweets for energy and lower intakes of fruits and vegetables.ConclusionsDisrupted eating patterns and diet of poor nutritional quality may exacerbate the development of obesity and metabolic diseases in habitual short and very long sleepers.


1984 ◽  
Vol 106 (17) ◽  
pp. 5008-5010 ◽  
Author(s):  
Craig R. Johnson ◽  
Michael Ludwig ◽  
Stephen O'Donnell ◽  
Sanford A. Asher

2019 ◽  
Author(s):  
A Craig ◽  
N Kolks ◽  
E Urusova ◽  
BD Zlatopolskiy ◽  
B Neumaier

2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document