scholarly journals Yield and Quality Characteristics of Brassica Microgreens as Affected by the NH4:NO3 Molar Ratio and Strength of the Nutrient Solution

Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 677 ◽  
Author(s):  
Onofrio Davide Palmitessa ◽  
Massimiliano Renna ◽  
Pasquale Crupi ◽  
Angelo Lovece ◽  
Filomena Corbo ◽  
...  

Microgreens are gaining more and more interest, but little information is available on the effects of the chemical composition of the nutrient solution on the microgreen yield. In this study, three Brassica genotypes (B. oleracea var. italica, B. oleracea var. botrytis, and Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort) were fertigated with three modified strength Hoagland nutrient solutions (1/2, 1/4, and 1/8 strength) or with three modified half-strength Hoagland nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Microgreen yields and content of inorganic ions, dietary fiber, proteins, α-tocopherol, and β-carotene were evaluated. Micro cauliflower showed the highest yield, as well as a higher content of mineral elements and α-tocopherol (10.4 mg 100 g−1 fresh weight (FW)) than other genotypes. The use of nutrient solution at half strength gave both a high yield (0.23 g cm−2) and a desirable seedling height. By changing the NH4:NO3 molar ratio in the nutrient solution, no differences were found on yield and growing parameters, although the highest β-carotene content (6.3 mg 100 g−1 FW) was found by using a NH4:NO3 molar ratio of 25:75. The lowest nitrate content (on average 6.8 g 100 g−1 dry weight) was found in micro broccoli and micro broccoli raab by using a nutrient solution with NH4:NO3 molar ratios of 25:75 and 5:95, respectively. Micro cauliflower fertigated with a NH4:NO3 molar ratio of 25:75 showed the highest dry matter (9.8 g 100 g−1 FW) and protein content (4.2 g 100 g−1 FW).

2000 ◽  
Vol 55 (10) ◽  
pp. 889-894 ◽  
Author(s):  
Armin Hamel ◽  
Christian Hollatz ◽  
Annette Schier ◽  
Hubert Schmidbaur

Abstract Gold Clustering, Dimethylsulfoximine Polyaurated complexes of the dimethylsulfoximide anion [Me2S(O)N]- have been prepared by reacting N-trimethylsilyl-dimethylsulfoximide with [(Ph3P)Au]BF4 in various molar ratios. With one or two equivalents of the gold(I) reagent only the dinuclear complex is obtained in high yield: {[(Ph3P)Au]2NS(O)Me2}+ BF4- . With three or four equivalents only the trinuclear complex is produced: {[(Ph3P)Au]3NS(O)Me2}2+ 2 BF4- . No mono- or tetra-auration was observed, respectively. The composition of the compounds has been confirmed by analytical and spectroscopic data, and the crystal structure of the dinuclear compound has been determined by single crystal X-ray diffraction of the dichloromethane solvate. The two gold atoms are found to be coordinated to the nitrogen atom with a small Au-N-Au angle of only 92.3(3)° and a short Au-Au distance of 2.9900(5) Å. The nitrogen atom is in a distorted trigonal pyramidal configuration which allows an intramolecular SO-Au contact. For the trinuclear complex a structure with a tetracoordinate nitrogen atom [SNAU3] is proposed which is analogous to the corresponding complexes of phosphinimines R3P=NH. With the ditertiary phosphine Ph2PCH2Ch2PPh2 (dppe) a cyclic dinuclear complex (dppe)Au2[NS(0 )Me2]BF4 can be synthesized starting from (dppe)Au2Cl2. The reaction of the phosphine-rich precursor [(Ph3P)2Au]BF4 with Me3SiNS(0 )Me2 in the molar ratio 2:1 affords a binuclear complex {[(Ph3P)2Au]2NS(0 )Me2}BF4 of an as yet unknown structure


2021 ◽  
Vol 899 ◽  
pp. 726-732
Author(s):  
Fatma I. Gasimova ◽  
Zaur Z. Aghamali̇yev ◽  
Gulshan J. Gasanova ◽  
Chingiz K. Rasulov

The present study deals with the investigation of catalytic cycloalkylation reactions of phenol with 1-methylcyclopentene. KU-23 and aluminum phenolate were used as catalysts for the process. The effect of kinetic parameters (temperature, duration, molar ratios of the initial components and the amount of catalyst) on the yield and selectivity of methylcyclopentyl phenols obtained as a result of scientific research was investigated. As a result, effective conditions were found for the production of para- and ortho-, ortho- (1-methylcyclopentyl) phenols with high yield and selectivity. It was determined that high yield of target product in the presence of phenol, 1-methylcyclopentene and catalyst KU-23, was 71.2% for phenol and selectivity for target product - 92.8% is obtained under the following conditions of cycloalkylation reaction: temperature 110°C, reaction time-5 hours, molar ratio phenol to methylcyclopentene-1 : 1, the amount of catalyst-10% according to the phenol taken. The cycloalkylation reaction of phenol with 1-methylcyclopentene in the presence of aluminum phenolate catalyst was carried out in an autoclave in a nitrogen environment and effective conditions were found: temperature 260°C, reaction time - 5 hours, molar ratio of phenol to 1-methylcyclopentene 1: 2, amount of catalyst 20% according to the phenol taken. Under these conditions, the yield of the target product is 44.3% for the phenol taken, and the selectivity is 87.6% for the target product. The chemical structures of the synthesized para- and ortho-, ortho- (1-methylcyclopentyl) phenols were confirmed by IR-, 1H and NMR spectroscopy, and physicochemical parameters were determined.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Lemma Tessema ◽  
Abebe Chindi ◽  
W. Giorgis Gebremedhin ◽  
Atsede Solomon ◽  
Egata Shunka ◽  
...  

AbstractIn soilless culture like aeroponics, nutrient optimization is the most critical factor to produce high quality and high yield of clean potato seed. Each crop has an optimum nutritional requirement. Even each potato cultivar may require a specific nutrient solution in an aeroponics unit. A nutrient optimization experiment was conducted at Holetta agricultural research center to study the effect of different nutrient solution levels on the physical quality and yield of potato mini-tubers. The treatments were four different nutrient solutions of greenhouse grade macro nutrients measured in (g) for the preparation of 500 liter volume of nutrient solution that is to be restocked when the nutrient tank becomes empty. The nutrient EC and pH were adjusted as per the requirements. A=(118 g CaNO


2008 ◽  
Vol 65 (6) ◽  
pp. 652-658 ◽  
Author(s):  
Rodrigo Luiz Cavarianni ◽  
Arthur Bernardes Cecílio Filho ◽  
Jairo Osvaldo Cazetta ◽  
André May ◽  
Mariana Marotti Corradi

Empiricism in the use of nutrient solutions is frequent. Several times the same nutrient solution is used to grow different species based only on morphological similarities. This practice may lead to nutritional imbalances, affecting not only the production but also the quality of the product due to an accumulation of nitrate. An experiment under hydroponic conditions - the NFT system - was conducted with the aim of evaluating the effect of the concentration of nitrogen in the nutrient solution on the production and on the nutrient and nitrate contents of rocket (Eruca sativa) salad leaves. The experiment was carried out in spring 2003, in a randomized block design and in a 4 x 3 factorial design, with four replicates. Four nitrogen concentrations in the nutrient solution (60.8; 121.6; 182.5; 243.5 mg L-1) and three rocket salad cultivars (Cultivada, Folha Larga and Selvática) were evaluated. Cv. Cultivada produced the tallest plants and the highest leaf fresh fitomass, not differing from cv. 'Folha Larga' in the number of leaves, leaf nitrate content, root dry fitomass and root fresh fitomass. An increment in NO3, N, Ca and P and a reduction in Mg, K and S occurred when the concentration of N in the nutrient solution was increased. Cultivation of cv. Cultivada at the concentration of 93 mg L-1 is the most recommended as it provides the highest yield and low nitrate content.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 847F-847
Author(s):  
Mohamed Benmoussa ◽  
Laurent Gauthier

To achieve high yield and better quality of soilless greenhouse tomato, it is necessary to keep the nutrient concentrations in the root environment at the target levels. Dynamic control of the nutrient solution composition can be used for this purpose. We developed a computer program that dynamically adjusts nutrient solution compositions based on various climatic and agronomic characteristics. The program integrates nutrient uptake and crop transpiration models and is part of a general-purpose greenhouse management and control software system developed at Laval University (GX). The architecture of the system and some simulation results comparing the effect of various control scenarios on the evolution of the composition of nutrient solutions are presented.


Author(s):  
Yimei Xi ◽  
Fantao Kong ◽  
Zhanyou Chi

The unicellular alga Dunaliella salina is regarded as a promising cell factory for the commercial production of β-carotene due to its high yield of carotenoids. However, the underlying mechanism of β-carotene accumulation is still unclear. In this study, the regulatory mechanism of β-carotene accumulation in D. salina under stress conditions was investigated. Our results indicated that there is a significant positive correlation between the cellular ROS level and β-carotene content, and the maximum quantum efficiency (Fv/Fm) of PSII is negatively correlated with β-carotene content under stress conditions. The increase of ROS was found to be coupled with the inhibition of Fv/Fm of PSII in D. salina under stress conditions. Furthermore, transcriptomic analysis of the cells cultivated with H2O2 supplementation showed that the major differentially expressed genes involved in β-carotene metabolism were upregulated, whereas the genes involved in photosynthesis were downregulated. These results indicated that ROS induce β-carotene accumulation in D. salina through fine-tuning genes which were involved in photosynthesis and β-carotene biosynthesis. Our study provided a better understanding of the regulatory mechanism involved in β-carotene accumulation in D. salina, which might be useful for overaccumulation of carotenoids and other valuable compounds in other microalgae.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3267
Author(s):  
Wen Jiang ◽  
Reza Hosseinpourpia ◽  
Vladimirs Biziks ◽  
Sheikh Ali Ahmed ◽  
Holger Militz ◽  
...  

Polyurethane (PU) adhesives were prepared with bio-polyols obtained via acid-catalyzed polyhydric alcohol liquefaction of wood sawdust and polymeric diphenylmethane diisocyanate (pMDI). Two polyols, i.e., crude and purified liquefied wood (CLW and PLW), were obtained from the liquefaction process with a high yield of 99.7%. PU adhesives, namely CLWPU and PLWPU, were then prepared by reaction of CLW or PLW with pMDI at various isocyanate to hydroxyl group (NCO:OH) molar ratios of 0.5:1, 1:1, 1.5:1, and 2:1. The chemical structure and thermal behavior of the bio-polyols and the cured PU adhesives were analyzed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Performance of the adhesives was evaluated by single-lap joint shear tests according to EN 302-1:2003, and by adhesive penetration. The highest shear strength was found at the NCO:OH molar ratio of 1.5:1 as 4.82 ± 1.01 N/mm2 and 4.80 ± 0.49 N/mm2 for CLWPU and PLWPU, respectively. The chemical structure and thermal properties of the cured CLWPLW and PLWPU adhesives were considerably influenced by the NCO:OH molar ratio.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 761F-761
Author(s):  
Mohamed Benmoussa ◽  
Laurent Gauthier

In soilless culture, the buffering capacity of the root environment for nutrients is low. This, combined with fluctuations of climatic factors and changes in nutrient uptake rates, can lead to nutrient imbalances. In order to achieve high yield and better quality, it is necessary to keep the nutrient concentrations in the root environment at the target levels. This requires frequent analysis and adjustments to the nutrient solution. Currently, leaching of the growing media or renewal of the nutrient solution is commonly used to avoid accumulation or depletion of nutrient in the root environment. However, this practice lowers the efficiency of fertilizers and can lead to the contamination of the ground water. One way to remedy to this problem is through the use of nutrients uptake models to track the composition of the nutrient solutions. The objective of this study was to develop such models. Such models can be used to maintain balanced nutrient solutions for longer periods. This can lead to reduced leaching and improved fertilizer use efficiency. Macronutrient (N, P, K, Ca, and Mg) uptake models were developed for tomato plants grown in an NFT system using data collected from experiments conducted in the Laval Univ. greenhouses. Analysis of the experimental results showed that the main factors affecting nutrients uptakes are light and transpiration.


2002 ◽  
Vol 50 (4) ◽  
pp. 389-397 ◽  
Author(s):  
N. Kacjan-Maršić ◽  
J. Osvald

The influence of different quantities of nitrogen in the nutrient solution on growth, development and nitrate content was studied in aeroponically grown lettuce (Lactuca sativa L.). Three successive experiments were conducted in 1999 from April to September, in an aeroponic system. The lettuce plants, cv. Vanity, were grown in aeroponics using four different amounts of nitrogen in the nutrient solutions. The pH level was maintained between 5.5 and 6.5, and the EC between 1.8 and 2.2 mS/cm. Fresh weight measurements were made on all the material. The differences between the mean fresh shoot weights were statistically significant in all three experiments. In the first experiment, the maximum final fresh weight in the treatment with 8 mM nitrogen averaged 999.0 g. In the second and third experiments the largest amount of nitrogen, 12 mM NO3-N, significantly (p<0.05) increased the fresh shoot weight of lettuce plants. low levels of nitrate in the nutrient solution (4 mM NO3-N in the first and 1.2 mM NO3-N in the second aeroponic experiment) significantly (p<0.05) increased the fresh weight of the final roots compared with the level of nitrate in standard nutrient solution (12 mM NO3-N). The differences between the means for plant height were statistically significant (p<0.05) in all three experiments. In the first and third experiments the lengths of the primary roots of the lettuce plants were significantly (p<0.05) influenced by different NO3-N concentrations in the nutrient solution. The highest NO3- concentration in the lettuce leaves was recorded in plants grown in nutrient solutions with the highest NO3-N concentration (17 mM in the first, 12 mM in the second and third experiments). An acceptably low NO3- concentration was found in the leaves of lettuce treated containing with nutrient solution 4 mM NO3-N in all three experiments.


Sign in / Sign up

Export Citation Format

Share Document