scholarly journals Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?

Forecasting ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 211-229
Author(s):  
Ulrich Gunter ◽  
Irem Önder ◽  
Egon Smeral

This study, which was contracted by the European Commission and is geared towards easy replicability by practitioners, compares the accuracy of individual and combined approaches to forecasting tourism demand for the total European Union. The evaluation of the forecasting accuracies was performed recursively (i.e., based on expanding estimation windows) for eight quarterly periods spanning two years in order to check the stability of the outcomes during a changing macroeconomic environment. The study sample includes Eurostat data from January 2005 until August 2017, and out of sample forecasts were calculated for the last two years for three and six months ahead. The analysis of the out-of-sample forecasts for arrivals and overnights showed that forecast combinations taking the historical forecasting performance of individual approaches such as Autoregressive Integrated Moving Average (ARIMA) models, REGARIMA models with different trend variables, and Error Trend Seasonal (ETS) models into account deliver the best results.

2016 ◽  
Vol 12 (1) ◽  
pp. 83 ◽  
Author(s):  
Muhammad Iqbal ◽  
Amjad Naveed

This study compares the forecasting performance of various Autoregressive integrated moving average (ARIMA) models by using time series data. Primarily, The Box-Jenkins approach is considered here for forecasting. For empirical analysis, we used CPI as a proxy for inflation and employed quarterly data from 1970 to 2006 for Pakistan. The study classified two important models for forecasting out of many existing by taking into account various initial steps such as identification, the order of integration and test for comparison. However, later model 2 turn out to be a better model than model 1 after considering forecasted errors and the number of comparative statistics.


2018 ◽  
Vol 10 (2) ◽  
pp. 163-170
Author(s):  
JA Syeda

An attempt was made to forecast the 17 monthly climatic variables for 2005-2012 of Dinajpur using the univariate Box-Jenkin’s ARIMA (autoregressive integrated moving average) modeling techniques for 1948-2004. The 8 years data for 1973-1980 were missing and those data were replaced with the 4 years monthly forecasted data for 1948-1972 and 1981-2004 (reversing the years). The well fitted ARIMA (autoregressive integrated moving average) models were selected from the possible 16 ARIMA models based on the minimum root mean square forecasting errors (RMSFE) with the last 24 observations for all the cases and the residuals followed stationarity and normality. Several outliers were detected in the data which were replaced by the forecasted value. The fitted model for sunshine data (1989-2004) was found ARIMA (1, 1, 1)(1, 1, 1)12 and for evaporation data (1987-2000) was ARIMA (1, 1, 2)(1, 1, 1)12. . The findings supports that the changing term of the climatic variables may have adverse impacts on the crop production in this country.J. Environ. Sci. & Natural Resources, 10(2): 163-170 2017


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250149
Author(s):  
Fuad A. Awwad ◽  
Moataz A. Mohamoud ◽  
Mohamed R. Abonazel

The novel coronavirus COVID-19 is spreading across the globe. By 30 Sep 2020, the World Health Organization (WHO) announced that the number of cases worldwide had reached 34 million with more than one million deaths. The Kingdom of Saudi Arabia (KSA) registered the first case of COVID-19 on 2 Mar 2020. Since then, the number of infections has been increasing gradually on a daily basis. On 20 Sep 2020, the KSA reported 334,605 cases, with 319,154 recoveries and 4,768 deaths. The KSA has taken several measures to control the spread of COVID-19, especially during the Umrah and Hajj events of 1441, including stopping Umrah and performing this year’s Hajj in reduced numbers from within the Kingdom, and imposing a curfew on the cities of the Kingdom from 23 Mar to 28 May 2020. In this article, two statistical models were used to measure the impact of the curfew on the spread of COVID-19 in KSA. The two models are Autoregressive Integrated Moving Average (ARIMA) model and Spatial Time-Autoregressive Integrated Moving Average (STARIMA) model. We used the data obtained from 31 May to 11 October 2020 to assess the model of STARIMA for the COVID-19 confirmation cases in (Makkah, Jeddah, and Taif) in KSA. The results show that STARIMA models are more reliable in forecasting future epidemics of COVID-19 than ARIMA models. We demonstrated the preference of STARIMA models over ARIMA models during the period in which the curfew was lifted.


1999 ◽  
Vol 23 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Runsheng Yin

Abstract In this paper, we conduct timber price forecasts with univariate autoregressive-integrated-moving-average, or ARIMA, models employing the standard Box-Jenkins modeling strategy. Using quarterly price series from Timber Mart-South, we find that most of the selected pine pulpwood and sawtimber markets can be evaluated using ARIMA models, and that short-term forecasts, especially those of one-lead forecasts, are fairly accurate. We believe that forecasting future prices could aid timber producers and consumers alike in timing harvests, reducing uncertainty, and enhancing efficiency. South. J. Appl. For. 23(1):53-58.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Rahul Tripathi ◽  
A. K. Nayak ◽  
R. Raja ◽  
Mohammad Shahid ◽  
Anjani Kumar ◽  
...  

Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA) models and was compared with the forecasted all Indian data. The autoregressive (p) and moving average (q) parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF) and autocorrelation function (ACF) of the different time series. ARIMA (2, 1, 0) model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1) was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC) and Schwarz-Bayesian information criteria (SBC). The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE), which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.


Forecasting ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 121-134 ◽  
Author(s):  
Jason W. Miller

The trucking sector in the United States is a $700 billion plus a year industry and represents a large percentage of many firms’ logistics spend. Consequently, there is interest in accurately forecasting prices for truck transportation. This manuscript utilizes the autoregressive integrated moving average (ARIMA) methodology to develop forecasts for three time series of monthly archival trucking prices obtained from two public sources—the Bureau of Labor Statistics (BLS) and Truckstop.com. BLS data cover January 2005 through August 2018; Truckstop.com data cover January 2015 through August 2018. Different ARIMA models closely approximate the observed data, with coefficients of variation of the root mean-square deviations being 0.007, 0.040, and 0.048. Furthermore, the estimated parameters map well onto dynamics known to operate in the industry, especially for data collected by the BLS. Theoretical and practical implications of these findings are discussed.


2017 ◽  
Vol 18 (3) ◽  
pp. 819-830 ◽  
Author(s):  
M. Birylo ◽  
Z. Rzepecka ◽  
J. Kuczynska-Siehien ◽  
J. Nastula

Abstract The European Union Water Framework Directive obliges each country to monitor the groundwater level as it is an important source of drinking water, but also an important part of agriculture. A water budget is used for assessing the accuracy of the groundwater level determination. The computations of the water budget are based on evapotranspiration and the state of land surface hydrosphere. On the basis of the determined water budget, statistics and the prognosis for the next 12 months can be computed. In this paper, all the components of the water budget, such as precipitation, surface run-off and evapotranspiration, are studied for the three tested locations in Poland: Suwalki, Zegrzynski and Tarnow cells. The resultant water budget was also determined and presented graphically. On the basis of the water budget research, a prognosis was determined using AutoRegressive Integrated Moving Average (ARIMA) models with the parameters (2,0,2). A comparison between actual water budget data and a prediction prepared for 2015.08–2016.08 indicated that analysing a 12-month period provides a satisfactory prediction assessment.


Author(s):  
Abhiram Dash ◽  
A. Mangaraju ◽  
Pradeep Mishra ◽  
H. Nayak

Cereals are the most important kharif season crop in Odisha. The present study was carried out to forecast the production of kharif cereals in Odisha by using the forecast values of area and yield of kharif cereals obtained from the selected best fit Autoregressive Integrated Moving Average (ARIMA) model. The data from 1970-71 to 2010-11 are considered as training set data and used for model building and from 2011-12 to 2015-16 are considered as testing set data and used for cross-validation of the selected model on the basis of the absolute percentage error. The ARIMA models are fitted to the stationary data which may be the original data or the differenced data. The different ARIMA models are evaluated on the basis of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) at various lags. The possible ARIMA models are selected on the basis of significant coefficient of autoregressive and moving average components by using the training set data. The best fitted models are then selected on the basis of residual diagnostics test and model fit statistics. The ARIMA model found to be best fitted for area under kharif cereals and yield of kharif cereals are ARIMA (1,1,0) without constant and ARIMA (0,1,2) without constant respectively which are successfully cross-validated with the testing set data. The respective best fit ARIMA model has been used to forecast the area and yield of kharif cereals for the years 2016-17, 2017-18 and 2018-19. The forecast values of area shows a decrease, whereas, the forecast values of yield shows an increase. The decrease in area might have been the result of limited availability of area for cereals due to shifting towards non-food grain crops. The forecast values of production of kharif cereals obtained from the forecast values of area and yield of kharif cereals shows an increase which is due to the increase in forecast values of yield. Since there is limited scope for area expansion, the future production of kharif cereals can only be increased by increasing the yield to achieve the goal of food security for the growing population.


Sign in / Sign up

Export Citation Format

Share Document