scholarly journals Using Autoregressive Integrated Moving Average (ARIMA) Technique to Forecast the Production of Kharif Cereals in Odisha (India)

Author(s):  
Abhiram Dash ◽  
A. Mangaraju ◽  
Pradeep Mishra ◽  
H. Nayak

Cereals are the most important kharif season crop in Odisha. The present study was carried out to forecast the production of kharif cereals in Odisha by using the forecast values of area and yield of kharif cereals obtained from the selected best fit Autoregressive Integrated Moving Average (ARIMA) model. The data from 1970-71 to 2010-11 are considered as training set data and used for model building and from 2011-12 to 2015-16 are considered as testing set data and used for cross-validation of the selected model on the basis of the absolute percentage error. The ARIMA models are fitted to the stationary data which may be the original data or the differenced data. The different ARIMA models are evaluated on the basis of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) at various lags. The possible ARIMA models are selected on the basis of significant coefficient of autoregressive and moving average components by using the training set data. The best fitted models are then selected on the basis of residual diagnostics test and model fit statistics. The ARIMA model found to be best fitted for area under kharif cereals and yield of kharif cereals are ARIMA (1,1,0) without constant and ARIMA (0,1,2) without constant respectively which are successfully cross-validated with the testing set data. The respective best fit ARIMA model has been used to forecast the area and yield of kharif cereals for the years 2016-17, 2017-18 and 2018-19. The forecast values of area shows a decrease, whereas, the forecast values of yield shows an increase. The decrease in area might have been the result of limited availability of area for cereals due to shifting towards non-food grain crops. The forecast values of production of kharif cereals obtained from the forecast values of area and yield of kharif cereals shows an increase which is due to the increase in forecast values of yield. Since there is limited scope for area expansion, the future production of kharif cereals can only be increased by increasing the yield to achieve the goal of food security for the growing population.

Author(s):  
Abhiram Dash ◽  
A. Mangaraju ◽  
Suman . ◽  
Pradeep Mishra

The present study was carried out to forecast the production of rabi pulse in Odisha by using the forecast values of area and yield of rabi pulses obtained from the selected best fit Autoregressive Integrated Moving Average (ARIMA) model. The data from 1971-72 to 2010-11 are considered as training set data and used for model building and from 2011-12 to 2015-16 are considered as testing set data and used for cross-validation of the selected model on the basis of the absolute percentage error. The ARIMA models are fitted to the stationary data which may be the original data and/or the differenced data. The different ARIMA models are judged on the basis of Autocorrelation Function (ACF) and Partial autocorrelation Function (PACF) at various lags. The possible ARIMA models are selected on the basis of significant coefficient of autoregressive and moving average components. The best fitted models are selected on the basis of residual diagnostics test and model fit statistics. The ARIMA model found to be best fitted for area under rabi pulse and yield of rabi pulse are ARIMA (2,0,0) with constant and ARIMA (0,1,1) without constant respectively which are successfully cross-validated with the testing set data. The excellent fit ARIMA model has been used to forecast the area and yield of rabi pulse for the years 2016-17, 2017-18 and 2018-19. The forecast value of area shows an increase, where as, the forecast values of yield shows a decrease. The forecast values of production of rabi pulse obtained from the forecast values of area and yield of rabi pulse shows an increase which is due to the increase in forecast value of area. Thus emphasis must be laid on increasing the future yield of rabi pulse so as to achieve sufficient increase in production of rabi pulses which could ensure nutritional security to more extent.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250149
Author(s):  
Fuad A. Awwad ◽  
Moataz A. Mohamoud ◽  
Mohamed R. Abonazel

The novel coronavirus COVID-19 is spreading across the globe. By 30 Sep 2020, the World Health Organization (WHO) announced that the number of cases worldwide had reached 34 million with more than one million deaths. The Kingdom of Saudi Arabia (KSA) registered the first case of COVID-19 on 2 Mar 2020. Since then, the number of infections has been increasing gradually on a daily basis. On 20 Sep 2020, the KSA reported 334,605 cases, with 319,154 recoveries and 4,768 deaths. The KSA has taken several measures to control the spread of COVID-19, especially during the Umrah and Hajj events of 1441, including stopping Umrah and performing this year’s Hajj in reduced numbers from within the Kingdom, and imposing a curfew on the cities of the Kingdom from 23 Mar to 28 May 2020. In this article, two statistical models were used to measure the impact of the curfew on the spread of COVID-19 in KSA. The two models are Autoregressive Integrated Moving Average (ARIMA) model and Spatial Time-Autoregressive Integrated Moving Average (STARIMA) model. We used the data obtained from 31 May to 11 October 2020 to assess the model of STARIMA for the COVID-19 confirmation cases in (Makkah, Jeddah, and Taif) in KSA. The results show that STARIMA models are more reliable in forecasting future epidemics of COVID-19 than ARIMA models. We demonstrated the preference of STARIMA models over ARIMA models during the period in which the curfew was lifted.


2020 ◽  
Vol 10 (2) ◽  
pp. 76-80
Author(s):  
Roro Kushartanti ◽  
Maulina Latifah

ARIMA is a forecasting method time series that does not require a specific data pattern. This study aims to analyze the forecasting of Semarang City DHF cases specifically in the Rowosari Community Health Center. The study used monthly data on DHF cases in the Rowosari Community Health Center in 2016, 2017, and 2019 as many as 36 dengue case data. The best ARIMA model for forecasting is a model that meets the requirements for parameter significance, white noise and has the MAPE (Mean Absolute Percentage Error Smallest) value. The results of the analysis show that the best model for predicting the number of dengue cases in the Rowosari Public Health Center Semarang is the ARIMA model (1,0,0) with a MAPE value of 43.98% and a significance coefficient of 0.353, meaning that this model is suitable and feasible to be used as a forecasting model. DHF cases in the Rowosari Community Health Center in Semarang City.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Rahul Tripathi ◽  
A. K. Nayak ◽  
R. Raja ◽  
Mohammad Shahid ◽  
Anjani Kumar ◽  
...  

Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA) models and was compared with the forecasted all Indian data. The autoregressive (p) and moving average (q) parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF) and autocorrelation function (ACF) of the different time series. ARIMA (2, 1, 0) model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1) was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC) and Schwarz-Bayesian information criteria (SBC). The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE), which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.


Author(s):  
Sagar Surendra Deshmukh ◽  
R. Paramasivam

India is witnessing tremendous growth in dairy industry. The milk production has increased from 20 million tonnes in 1961 to 132 million tonnes in 2012-13. India has been retaining its number one position in milk production for many years. Dairy Industry in India is growing at the rate of 10% per annum. Considering this, it is essential to know the future production to improve and sustain the growth and development of sector. The objective of the study is to find out most suitable forecasting method for milk production for sustainable future production and policy implications. The data used in study is secondary data, collected from FAOSTAT (1961 to 2012) and NDDB (1991 to 2012). Stationarity of data was checked with Autocorrelation Function (ACF) and Partial autocorrelation function (PACF), after confirming the stationarity, Autoregressive Integrated Moving Average (ARIMA) and Vector Autoregression (VAR) models were used. Akaike Information Criteria (AIC), Schwartz Bayesian Criteria (SBC), Mean Absolute Percentage Error (MAPE), R square and RMSE were used to test reliability of model. The results indicate that ARIMA (1, 1, 1) is more suitable method with the use of SPSS software package for forecasting of milk. Milk production is expected to be 160 million tonnes by 2017.


Author(s):  
Debasis Mithiya ◽  
Lakshmikanta Datta ◽  
Kumarjit Mandal

Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the second most important role in Indian agricultural economy, next to food grains, in terms of area and production. Oilseeds production in India has increased with time, however, the increasing demand for edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign exchange. The need for addressing this deficit motivated a systematic study of the oilseeds economy to formulate appropriate strategies to bridge the demand-supply gap. In this study, an effort is made to forecast oilseeds production by using Autoregressive Integrated Moving Average (ARIMA) model, which is the most widely used model for forecasting time series. One of the main drawbacks of this model is the presumption of linearity. The Group Method of Data Handling (GMDH) model has also been applied for forecasting the oilseeds production because it contains nonlinear patterns. Both ARIMA and GMDH are mathematical models well-known for time series forecasting. The results obtained by the GMDH are compared with the results of ARIMA model. The comparison of modeling results shows that the GMDH model perform better than the ARIMA model in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The experimental results of both models indicate that the GMDH model is a powerful tool to handle the time series data and it provides a promising technique in time series forecasting methods.


Author(s):  
A. U. Noman ◽  
S. Majumder ◽  
M. F. Imam ◽  
M. J. Hossain ◽  
F. Elahi ◽  
...  

Export plays an important role in promoting economic growth and development. The study is conducted to make an efficient forecasting of tea export from Bangladesh for mitigating the risk of export in the world market. Forecasting has been done by fitting Box-Jenkins type autoregressive integrated moving average (ARIMA) model. The best ARIMA model is selected by comparing the criteria- coefficient of determination (R2), root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) and Bayesian information criteria (BIC). Among the Box-Jenkins ARIMA type models for tea export the ARIMA (1,1,3) model is the most appropriate one for forecasting and the forecast values in thousand kilogram for the year 2017-18, 2018-19, 2019-20, 2020-21 and 2021-22, are 1096.48, 812.83, 1122.02, 776.25 and 794.33 with upper limit 1819.70, 1348.96, 1862.09, 1288.25, 1318.26 and lower limit 660.69, 489.78, 676.08, 467.74, 478.63, respectively. So, the result of this model may be helpful for the policymaker to make an export development plan for the country.


The challenging endeavor of a time series forecast model is to predict the future time series data accurately. Traditionally, the fundamental forecasting model in time series analysis is the autoregressive integrated moving average model or the ARIMA model requiring a model identification of a three-component vector which are the autoregressive order, the differencing order, and the moving average order before fitting coefficients of the model via the Box-Jenkins method. A model identification is analyzed via the sample autocorrelation function and the sample partial autocorrelation function which are effective tools for identifying the ARMA order but it is quite difficult for analysts. Even though a likelihood based-method is presented to automate this process by varying the ARIMA order and choosing the best one with the smallest criteria, such as Akaike information criterion. Nevertheless the obtained ARIMA model may not pass the residual diagnostic test. This paper presents the residual neural network model, called the self-identification ResNet-ARIMA order model to automatically learn the ARIMA order from known ARIMA time series data via sample autocorrelation function, the sample partial autocorrelation function and differencing time series images. In this work, the training time series data are randomly simulated and checked for stationary and invertibility properties before they are used. The result order from the model is used to generate and fit the ARIMA model by the Box-Jenkins method for predicting future values. The whole process of the forecasting time series algorithm is called the self-identification ResNet-ARIMA algorithm. The performance of the residual neural network model is evaluated by Precision, Recall and F1-score and is compared with the likelihood basedmethod and ResNET50. In addition, the performance of the forecasting time series algorithm is applied to the real world datasets to ensure the reliability by mean absolute percentage error, symmetric mean absolute percentage error, mean absolute error and root mean square error and this algorithm is confirmed with the residual diagnostic checks by the Ljung-Box test. From the experimental results, the new methodologies of this research outperforms other models in terms of identifying the order and predicting the future values.


Author(s):  
Gaetano Perone

AbstractCoronavirus disease (COVID-2019) is a severe ongoing novel pandemic that is spreading quickly across the world. Italy, that is widely considered one of the main epicenters of the pandemic, has registered the highest COVID-2019 death rates and death toll in the world, to the present day. In this article I estimate an autoregressive integrated moving average (ARIMA) model to forecast the epidemic trend over the period after April 4, 2020, by using the Italian epidemiological data at national and regional level. The data refer to the number of daily confirmed cases officially registered by the Italian Ministry of Health (www.salute.gov.it) for the period February 20 to April 4, 2020. The main advantage of this model is that it is easy to manage and fit. Moreover, it may give a first understanding of the basic trends, by suggesting the hypothetic epidemic’s inflection point and final size.Highlights❖ARIMA models allow in an easy way to investigate COVID-2019 trends, which are nowadays of huge economic and social impact.❖These data may be used by the health authority to continuously monitor the epidemic and to better allocate the available resources.❖The results suggest that the epidemic spread inflection point, in term of cumulative cases, will be reached at the end of May.❖Further useful and more precise forecasting may be provided by updating these data or applying the model to other regions and countries.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Arul Earnest ◽  
Say Beng Tan ◽  
Annelies Wilder-Smith ◽  
David Machin

Dengue fever (DF) is a serious public health problem in many parts of the world, and, in the absence of a vaccine, disease surveillance and mosquito vector eradication are important in controlling the spread of the disease. DF is primarily transmitted by the femaleAedes aegyptimosquito. We compared two statistical models that can be used in the surveillance and forecast of notifiable infectious diseases, namely, the Autoregressive Integrated Moving Average (ARIMA) model and the Knorr-Held two-component (K-H) model. The Mean Absolute Percentage Error (MAPE) was used to compare models. We developed the models using used data on DF notifications in Singapore from January 2001 till December 2006 and then validated the models with data from January 2007 till June 2008. The K-H model resulted in a slightly lower MAPE value of 17.21 as compared to the ARIMA model. We conclude that the models' performances are similar, but we found that the K-H model was relatively more difficult to fit in terms of the specification of the prior parameters and the relatively longer time taken to run the models.


Sign in / Sign up

Export Citation Format

Share Document