scholarly journals Estimating the Potential of Electric Vehicles for Travelling to Work and Education in Melbourne, Victoria

2021 ◽  
Vol 1 (3) ◽  
pp. 737-746
Author(s):  
Mahmut Gezmish ◽  
Long T. Truong

This paper aims to estimate the potential of electric vehicles (EVs) in Melbourne, Victoria, using the Victorian Integrated Survey of Travel and Activity (VISTA) data. The investigation of whether EVs with different all-electric ranges (AERs) can replace car travel to work and education is the focus of this paper. The results showed that EVs would be able to replace most car travel to work (68.5% to 97.1%) and car travel to education (71.9% to 96.9%), with AERs increasing from 40 km to 100 km, assuming car drivers are willing to use an EV. It is estimated that the average operating cost savings per person would be up to AUD 3.12 and AUD 2.79 each day, regarding travel to work and education, respectively. Considering both travel to work and education, EVs could replace up to 33.8 million kilometres of car travel, consuming around 7.6 GWh and resulting in a reduction in carbon dioxide (CO2) emissions of about 610 tons each day.

2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


Author(s):  
Theodore Hanein ◽  
Marco Simoni ◽  
Chun Long Woo ◽  
John L Provis ◽  
Hajime Kinoshita

The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (~900°C). A novel...


2008 ◽  
Vol 8 (2) ◽  
pp. 7373-7389 ◽  
Author(s):  
A. Stohl

Abstract. Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.


2019 ◽  
Vol 19 (23) ◽  
pp. 14949-14965 ◽  
Author(s):  
Catherine C. Ivanovich ◽  
Ilissa B. Ocko ◽  
Pedro Piris-Cabezas ◽  
Annie Petsonk

Abstract. While individual countries work to achieve and strengthen their nationally determined contributions (NDCs) to the Paris Agreement, the growing emissions from two economic sectors remain largely outside most countries' NDCs: international shipping and international aviation. Reducing emissions from these sectors is particularly challenging because the adoption of any policies and targets requires the agreement of a large number of countries. However, the International Maritime Organization (IMO) and the International Civil Aviation Organization (ICAO) have recently announced strategies to reduce carbon dioxide (CO2) emissions from their respective sectors. Here we provide information on the climate benefits of these proposed measures, along with related potential measures. Given that the global average temperature has already risen 1 ∘C above preindustrial levels, there is only 1.0 or 0.5 ∘C of additional “allowable warming” left to stabilize below the 2 or 1.5 ∘C thresholds, respectively. We find that if no actions are taken, CO2 emissions from international shipping and aviation may contribute roughly equally to an additional combined 0.12 ∘C to global temperature rise by end of century – which is 12 % and 24 % of the allowable warming we have left to stay below the 2 or 1.5 ∘C thresholds (1.0 and 0.5 ∘C), respectively. However, stringent mitigation measures may avoid over 85 % of this projected future warming from the CO2 emissions from each sector. Quantifying the climate benefits of proposed mitigation pathways is critical as international organizations work to develop and meet long-term targets.


Marine Policy ◽  
2019 ◽  
Vol 107 ◽  
pp. 103382 ◽  
Author(s):  
Krista Greer ◽  
Dirk Zeller ◽  
Jessika Woroniak ◽  
Angie Coulter ◽  
Maeve Winchester ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document