scholarly journals A Review of Recent Observations of Galactic Winds Driven by Star Formation

Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 138 ◽  
Author(s):  
David Rupke

Galaxy-scale outflows of gas, or galactic winds (GWs), driven by energy from star formation are a pivotal mechanism for regulation of star formation in the current model of galaxy evolution. Observations of this phenomenon have proliferated through the wide application of old techniques on large samples of galaxies, the development of new methods, and advances in telescopes and instrumentation. I review the diverse portfolio of direct observations of stellar GWs since 2010. Maturing measurements of the ionized and neutral gas properties of nearby winds have been joined by exciting new probes of molecular gas and dust. Low-z techniques have been newly applied in large numbers at high z. The explosion of optical and near-infrared 3D imaging spectroscopy has revealed the complex, multiphase structure of nearby GWs. These observations point to stellar GWs being a common feature of rapidly star-forming galaxies throughout at least the second half of cosmic history, and suggest that scaling relationships between outflow and galaxy properties persist over this period. The simple model of a modest-velocity, biconical flow of multiphase gas and dust perpendicular to galaxy disks continues to be a robust descriptor of these flows.

2015 ◽  
Vol 11 (S319) ◽  
pp. 53-53
Author(s):  
Rhythm Shimakawa ◽  
Tadayuki Kodama ◽  
Masao Hayashi ◽  
Ken-ichi Tadaki ◽  
Tomoko L. Suzuki ◽  
...  

AbstractThe redshift interval z = 2–3 is known as the cosmic noon that is the most active era of star formation across the Universe (Hopkins & Beacom 2006). In the past decade, many authors have investigated global properties of star-forming (SF) galaxies in this turbulent era, such as gas fractions and gaseous metallicities (e.g. Erb et al. 2006). With those achievements, we are going on to the next stage to understand more details i.e. those physical parameters in star-forming regions. Recent advent of near-infrared instruments typified by MOSFIRE on the Keck telescope, enable us with identifying the physical parameters of Hii regions in ‘typical’ SF galaxies individually (Steidel et al. 2014). Recent highlights suggest higher electron densities, higher ionization parameters, and harder UV radiation fields may be common.In order to know how galaxy evolution physically correlates with the natures of their star-forming regions, we have explored relationships between the electron density (ne) of ionized gas from the oxygen line ratio and other physical properties, based on the deep spectra of Hα emitters at z = 2.5 by the MOSFIRE. MOSFIRE for the first time provides ne of the galaxies at high-z with a high level of confidence. The result shows the specific star formation rate (sSFR) and the SFR surface density (ΣSFR) are correlated with ne (Shimakawa et al. 2015). The ne-ΣSFR relation could be linked to the star formation law in Hii regions if we assume that hydrogen in Hii regions is fully-ionized. Otherwise, more active star formation per unit area (higher ΣSFRs), may cause higher ionization states. However, we need some specific concerns that obtained physical parameters should depend on the scale dependence, since typical size of Hii region is only <100 pc despite that we study physical states of entire galaxies. Thus we obtain surface-brightness-weighted and ensemble averaged line fluxes for the entire galaxy or the part that falls into the slit width (a few kpc scale size). The thirty meter telescope (TMT) is a powerful instrument to resolve such a difficulty, since its spatial resolution reaches <100 pc on the physical scale at z ~ 2 by AO assistance.


2019 ◽  
Vol 15 (S352) ◽  
pp. 253-265
Author(s):  
Stijn Wuyts ◽  
Natascha M. Förster Schreiber

AbstractResolved observations of star-forming galaxies at cosmic noon with the Hubble Space Telescope and large ground-based facilities provide a view on the spatial distribution of stars, gas and dust, and probe gaseous motions revealing the central gravitational potential and local feedback processes at play. In this paper, we review recent insights gained from such observations, with an emphasis on results obtained through optical/near-infrared imaging and imaging spectroscopy. Their context and implications are documented more fully in a forthcoming review article by Förster Schreiber & Wuyts (in prep).


2019 ◽  
Vol 15 (S352) ◽  
pp. 55-59
Author(s):  
Shohei Arata ◽  
Hidenobu Yajima ◽  
Kentaro Nagamine ◽  
Yuexing Li ◽  
Sadegh Khochfar

AbstractRecent observations have successfully detected UV or infrared flux from galaxies at the epoch of reionization. However, the origin of their radiative properties has not been fully understood yet. Combining cosmological hydrodynamic simulations and radiative transfer calculations, we present theoretical predictions of multi-wavelength radiative properties of the first galaxies at z = 6–15. We find that most of the gas and dust are ejected from star-forming regions due to supernova (SN) feedback, which allows UV photons to escape. We show that the peak of SED rapidly shifts between UV and infrared wavelengths on a timescale of 100 Myr due to intermittent star formation and feedback. When dusty gas covers the star-forming regions, the galaxies become bright in the observed-frame sub-millimeter wavelengths. In addition, we find that the escape fraction of ionizing photons also changes between 1–40% at z > 10. The mass fraction of H ii region changes with star formation history, resulting in fluctuations of metal lines and Lyman-α line luminosities. In the starbursting phase of galaxies with a halo mass ∼1011Mȯ (1012Mȯ), the simulated galaxy has L[OIII] ∼ 1042 (1043) erg s−1, which is consistent with the observed star-forming galaxies at z > 7. Our simulations suggest that deep [Cii] observation with ALMA can trace the distribution of neutral gas extending over ∼20 physical kpc. We also find that the luminosity ratio L[OIII]/L[CII] decreases with bolometric luminosity due to metal enrichment. Our simulations show that the combination of multi-wavelength observations by ALMA and JWST will be able to reveal the multi-phase ISM structure and the transition from starbursting to outflowing phases of high-z galaxies.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


2008 ◽  
Vol 4 (S255) ◽  
pp. 397-401
Author(s):  
David J. Rosario ◽  
Carlos Hoyos ◽  
David Koo ◽  
Andrew Phillips

AbstractWe present a study of remarkably luminous and unique dwarf galaxies at redshifts of 0.5 < z < 0.7, selected from the DEEP2 Galaxy Redshift survey by the presence of the temperature sensitive [OIII]λ4363 emission line. Measurements of this important auroral line, as well as other strong oxygen lines, allow us to estimate the integrated oxygen abundances of these galaxies accurately without being subject to the degeneracy inherent in the standard R23 system used by most studies. [O/H] estimates range between 1/5–1/10 of the solar value. Not surprisingly, these systems are exceedingly rare and hence represent a population that is not typically present in local surveys such as SDSS, or smaller volume deep surveys such as GOODS.Our low-metallicity galaxies exhibit many unprecedented characteristics. With B-band luminosities close to L*, thse dwarfs lie significantly away from the luminosity-metallicity relationships of both local and intermediate redshift star-forming galaxies. Using stellar masses determined from optical and NIR photometry, we show that they also deviate strongly from corresponding mass-metallicity relationships. Their specific star formation rates are high, implying a significant burst of recent star formation. A campaign of high resolution spectroscopic follow-up shows that our galaxies have dynamical properties similar to local HII and compact emission line galaxies, but mass-to-light ratios that are much higher than average star-forming dwarfs.The low metallicities, high specific star formation rates, and small halo masses of our galaxies mark them as lower redshift analogs of Lyman-Break galaxies, which, at z ~ 2 are evolving onto the metallicity sequence that we observe in the galaxy population of today. In this sense, these systems offer fundamental insights into the physical processes and regulatory mechanisms that drive galaxy evolution in that epoch of major star formation and stellar mass assembly.


2020 ◽  
Vol 58 (1) ◽  
pp. 661-725 ◽  
Author(s):  
Natascha M. Förster Schreiber ◽  
Stijn Wuyts

Ever deeper and wider look-back surveys have led to a fairly robust outline of the cosmic star-formation history, which culminated around [Formula: see text]; this period is often nicknamed “cosmic noon.” Our knowledge about star-forming galaxies at these epochs has dramatically advanced from increasingly complete population censuses and detailed views of individual galaxies. We highlight some of the key observational insights that influenced our current understanding of galaxy evolution in the equilibrium growth picture: ▪  Scaling relations between galaxy properties are fairly well established among massive galaxies at least out to [Formula: see text], pointing to regulating mechanisms already acting on galaxy growth. ▪  Resolved views reveal that gravitational instabilities and efficient secular processes within the gas- and baryon-rich galaxies at [Formula: see text] play an important role in the early buildup of galactic structure. ▪  Ever more sensitive observations of kinematics at [Formula: see text] are probing the baryon and dark matter budget on galactic scales and the links between star-forming galaxies and their likely descendants. ▪  Toward higher masses, massive bulges, dense cores, and powerful AGNs and AGN-driven outflows are more prevalent and likely play a role in quenching star formation. We outline emerging questions and exciting prospects for the next decade with upcoming instrumentation, including the James Webb Space Telescope and the next generation of extremely large telescopes.


2019 ◽  
Vol 15 (S352) ◽  
pp. 27-32
Author(s):  
Stefano Carniani

AbstractCharacterising primeval galaxies entails the challenging goal of observing galaxies with modest star formation rates (SFR < 100 Mȯyr−1) and approaching the beginning of the reionisation epoch (z > 6). To date a large number of primeval galaxies have been identified thanks to deep near-infrared surveys. However, to further our understanding on the formation and evolution of such primeval objects, we must investigate their nature and physical properties through multi-band spectroscopic observations. Information on dust content, metallicity, interactions with the surrounding environment, and outflows can be obtained with ALMA observations of far-infrared (FIR) lines such as the [Cii] at 158 μm and [Oiii] at 88 μm. Here, we, thus, discuss the recent results unveiled by ALMA observations and present new [Cii] observations of BDF-3299, a star-forming galaxy at z = 7.1 showing a spatial and spectral offset between the rest-frame UV and the FIR lines emission.


2020 ◽  
Vol 498 (4) ◽  
pp. 4745-4789
Author(s):  
S Jaiswal ◽  
A Omar

ABSTRACT The Giant Meter-wave Radio Telescope observations of the H i 21 cm-line emission from 13 nearby dwarf star-forming galaxies are presented. These galaxies are selected from the catalogues of Wolf−Rayet galaxies having very young (≤10 Myr) star formation. The ranges of star formation rates and stellar masses of the sample galaxies are 0.03–1.7 M⊙ yr−1 and 0.04–22.3 × 108 M⊙, respectively. The H i line emission is detected from 12 galaxies with peak column density &gt;1 × 1021 cm−2. The 3σ H i column density sensitivities per channel width of 7 km s−1 for low (60 arcsec × 60 arcsec) resolution images are in the range 0.8–1.9 × 1019 cm−2. The H i channel images, moment images, global profiles, and mass surface density profiles are presented here. The average value of the peak H i mass surface density is estimated to be ∼2.5 M⊙ pc−2, which is significantly less compared to that in massive spiral galaxies. The scaling relations of $(M_{stars} + M_{\rm H\, I} + M_{\rm He})$versus Mdyn, gas fraction versus MB, $M_{\rm H\, I}$versus Mstars, H i-to-stellar mass ratio versus Mstars, and $M_{\rm H\, I}$versus $D_{\rm H\, I}$for the sample galaxies are estimated. These scaling relations can be used to constraint the key parameters in the galaxy evolution models. These galaxies are residing in group environment with galaxy density up to eight galaxy Mpc−3. An H i mass deficiency (with DEFH i &gt; 0.3) is noticed in majority of galaxies for their optical diameters as compared to galaxies in field environments. Clear signatures of tidal interactions in these galaxies could be inferred using the H i images. Isolated H i clouds without known optical counterparts are seen in the vicinity of several galaxies. H i emission envelope is found to be having an offset from the optical envelope in several galaxies. Consistent with the previous studies on galaxy evolution in group environments, tidal interactions seem to play an important role in triggering recent star formation.


2019 ◽  
Vol 490 (2) ◽  
pp. 2347-2366 ◽  
Author(s):  
Salvatore Quai ◽  
Lucia Pozzetti ◽  
Michele Moresco ◽  
Annalisa Citro ◽  
Andrea Cimatti ◽  
...  

ABSTRACT Understanding when, how, and where star formation ceased (quenching) within galaxies is still a critical subject in galaxy evolution studies. Taking advantage of the new methodology developed by Quai et al. to select recently quenched galaxies, we explored the spatial information provided by the IFU data to get critical insights on this process. In particular, we analyse 10 SDSS-IV MaNGA galaxies that show regions with low [O iii]/H α compatible with a recent quenching of the star formation. We compare the properties of these 10 galaxies with those of a control sample of 8 MaNGA galaxies with ongoing star formation in the same stellar mass, redshift, and gas-phase metallicity range. The quenching regions found are located between 0.5 and 1.1 effective radii from the centre. This result is supported by the analysis of the average radial profile of the ionization parameter, which reaches a minimum at the same radii, while the one of the star-forming sample shows an almost flat trend. These quenching regions occupy a total area between ∼ 15 and 45 per cent of our galaxies. Moreover, the average radial profile of the star formation rate surface density of our sample is lower and flatter than that of the control sample, at any radii, suggesting a systematic suppression of the star formation in the inner part of our galaxies. Finally, the radial profiles of gas-phase metallicity of the two samples have a similar slope and normalization. Our results cannot be ascribed to a difference in the intrinsic properties of the analysed galaxies, suggesting a quenching scenario more complicated than a simple inside-out quenching.


Sign in / Sign up

Export Citation Format

Share Document