scholarly journals Frequency of Planets in Binaries

Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Mariangela Bonavita ◽  
Silvano Desidera

The frequency of planets in binaries is an important issue in the field of extrasolar planet studies because of its relevance in the estimation of the global planet population of our galaxy and the clues it can give to our understanding of planet formation and evolution. Multiple stars have often been excluded from exoplanet searches, especially those performed using the radial velocity technique, due to the technical challenges posed by such targets. As a consequence and despite recent efforts, our knowledge of the frequency of planets in multiple stellar systems is still rather incomplete. On the other hand, the lack of knowledge about the binarity at the time of the compilation of the target samples means that our estimate of the planet frequency around single stars could be tainted by the presence of unknown binaries, especially if these objects have a different behavior in terms of planet occurrence. In a previous work we investigated the binarity of the objects included in the Uniform Detectability sample defined by Fisher and Valenti (2005), showing how more than 20% of their targets were, in fact, not single stars. Here, we present an update of this census, made possible mainly by the information now available thanks to the second Gaia Data Release. The new binary sample includes a total of 313 systems, of which 114 were added through this work. We were also able to significantly improve the estimates of masses and orbital parameters for most of the pairs in the original list, especially those at close separations. A few new systems with white dwarf companions were also identified. The results of the new analysis are in good agreement with the findings of our previous work, confirming the lack of difference in the overall planet frequency between binaries and single stars but suggesting a decrease in the planet frequency for very close pairs.

2019 ◽  
Vol 14 (S351) ◽  
pp. 516-519
Author(s):  
A. Sollima ◽  
H. Baumgardt ◽  
M. Hilker

AbstractI present the results of a survey of the kinematics of a large sample of Galactic globular clusters performed thanks to the synergy between the 2nd Gaia data release and the most extensive collection of radial velocities. This unprecedented dataset of 3D velocities of thousand of stars in 62 globular clusters has been used to investigate the rotation patterns of these stellar systems providing insight into the impact of two-body relaxation and tides on the formation and evolution of their rotation.


2016 ◽  
Vol 25 (4) ◽  
Author(s):  
Y. M. Gebrehiwot ◽  
D. A. Kovaleva ◽  
A. Yu. Kniazev ◽  
O. Yu. Malkov ◽  
N. A. Skvortsov ◽  
...  

AbstractAccording to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component) systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components) in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc.), some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.


1999 ◽  
Vol 170 ◽  
pp. 347-353 ◽  
Author(s):  
A.A. Tokovinin

AbstractA radial velocity survey of the components of visual multiple stars has been done since 1994 with the correlation radial velocity spectrometer. About 50 spectroscopic sub-systems have been discovered, and a summary of the 30 published orbits is given. Difficulties of measuring the radial velocities of multiple stars are discussed and illustrated by 2 examples. New discoveries will lead to a better understanding of the formation of multiple stellar systems. Close and wide sub-systems can not be considered as a result of independent random combination, but are related by common origin. Almost all close binaries with periods less than 6 days possibly have more distant components which assisted in the formation of close pairs by taking away their angular momentum. On the other hand, among the distant visual tertiary companions the frequency of sub-systems with periods under 100 days is about 3 times higher than for field G dwarfs.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 499
Author(s):  
Caroline Bonazza ◽  
Jiao Zhu ◽  
Roger Hasler ◽  
Rosa Mastrogiacomo ◽  
Paolo Pelosi ◽  
...  

An electronic biosensor for odors was assembled by immobilizing the silk moth Bombyx mori pheromone binding protein (BmorPBP1) on a reduced graphene oxide surface of a field-effect transistor. At physiological pH, the sensor detects the B. mori pheromones, bombykol and bombykal, with good affinity and specificity. Among the other odorants tested, only eugenol elicited a strong signal, while terpenoids and other odorants (linalool, geraniol, isoamyl acetate, and 2-isobutyl-3-methoxypyrazine) produced only very weak responses. Parallel binding assays were performed with the same protein and the same ligands, using the common fluorescence approach adopted for similar proteins. The results are in good agreement with the sensor’s responses: bombykol and bombykal, together with eugenol, proved to be strong ligands, while the other compounds showed only poor affinity. When tested at pH 4, the protein failed to bind bombykol both in solution and when immobilized on the sensor. This result further indicates that the BmorPBP1 retains its full activity when immobilized on a surface, including the conformational change observed in acidic conditions. The good agreement between fluorescence assays and sensor responses suggests that ligand-binding assays in solution can be used to screen mutants of a binding protein when selecting the best form to be immobilized on a biosensor.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1373
Author(s):  
Yueh-Yu Lin ◽  
Felix Schleifer ◽  
Markus Holzinger ◽  
Na Ta ◽  
Birgit Skrotzki ◽  
...  

The effectiveness of the mechanism of precipitation strengthening in metallic alloys depends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ′′ precipitates in Ni-based alloys and tetragonal θ′ precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations. We employed the method of invariant moments for the consistent shape quantification of precipitates obtained from the simulation as well as those obtained from the experiment. Two well-defined shape-quantities are proposed: (i) a generalized measure for the particles aspect ratio and (ii) the normalized λ2, as a measure for shape deviations from an ideal ellipse of the given aspect ratio. Considering the size dependence of the aspect ratio of γ′′ precipitates, we find good agreement between the simulation results and the experiment. Further, the precipitates’ in-plane shape is defined as the central 2D cut through the 3D particle in a plane normal to the tetragonal c-axes of the precipitate. The experimentally observed in-plane shapes of γ′′-precipitates can be quantitatively reproduced by the phase-field model.


1989 ◽  
Vol 114 ◽  
pp. 440-442
Author(s):  
M. Politano ◽  
R. F. Webbink

A zero-age cataclysmic binary (ZACB) we define as a binary system at the onset of interaction as a cataclysmic variable. We present here the results of calculations of the distributions of white dwarf masses and of orbital periods in ZACBs, due to binaries present in a stellar population which has undergone continuous, constant star formation for 1010 years.Distributions of ZACBs were calculated for binaries formed t years ago, for log t = 7.4 (the youngest age at which viable ZACBs can form) to log t = 10.0 (the assumed age of the Galactic disk), in intervals of log t = 0.1. These distributions were then integrated over time to obtain the ZACB distribution for a constant rate of star formation. To compute the individual distributions for a given t, we require the density of systems forming (number of pre-cataclysmics forming per unit volume of orbital parameter space), n£(t), and the rates at which the radii of the secondary and of its Roche lobe are changing in time, s (t) and L, s (t), respectively. In calculating nf(t), we assume that the distribution of the orbital parameters in primordial (ZAMS) binaries may be written as the product of the distribution of masses of ZAMS stars (Miller and Scalo 1979), the distribution of mass ratios in ZAMS binaries (cf. Popova, et al., 1982), and the distribution of orbital periods in ZAMS binaries (Abt 1983). In transforming the the orbital parameters from progenitor (ZAMS) to offspring (ZACB) binaries, we assume that all of the orbital energy deposited into the envelope during the common envelope phase leading to ZACB formation goes into unbinding that envelope. R.L, s (t) is determined from orbital angular momentum loss rates due to gravitational radiation (Landau and Lifshitz 1951) and magnetic braking (γ = 2 in Rappaport, Verbunt, and Joss 1983). We turn off magnetic braking if the secondary is completely convective.


2011 ◽  
Vol 7 (S281) ◽  
pp. 186-189
Author(s):  
Koji Mukai ◽  
Jennifer L. Sokoloski ◽  
Thomas Nelson ◽  
Gerardo J. M. Luna

AbstractWe present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RNe candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.


2004 ◽  
Vol 18 (09) ◽  
pp. 1351-1368
Author(s):  
ANDREI DOLOCAN ◽  
VOICU OCTAVIAN DOLOCAN ◽  
VOICU DOLOCAN

Using a new Hamiltonian of interaction we have calculated the cohesive energy in three-dimensional structures. We have found the news dependences of this energy on the distance between the atoms. The obtained results are in a good agreement with experimental data in ionic, covalent and noble gases crystals. The coupling constant γ between the interacting field and the atoms is somewhat smaller than unity in ionic crystals and is some larger than unity in covalent and noble gases crystals. The formulae found by us are general and may be applied, also, to the other types of interactions, for example, gravitational interactions.


Perception ◽  
1996 ◽  
Vol 25 (12) ◽  
pp. 1419-1436 ◽  
Author(s):  
Paul Locher ◽  
Sharon Gray ◽  
Calvin Nodine

Two experiments were performed to examine how the subjective balance of a painting is created by its structural features and to determine if balance influences the way people look at paintings. Stimuli consisted of sixteen reproductions of twentieth-century paintings varying in artistic style and a reconstructed less-balanced version of each. Participants in experiment 1 determined the location of the balance center of each composition, assigned ‘weights’ to the pictorial features which contributed to the location of the balance center, and rated the picture for balance. It was found that design and museum professionals and individuals untrained in the visual arts were in good agreement as to the structural framework underlying the balance organization of a painting. For all participants, disruption of the balanced organizations of the original compositions led to reliable shifts in the location of the perceived balance centers of the originals compared with their less-balanced perturbations. Additionally, it was observed that particular features as such were not the origin of the balance phenomenon; rather, judgments concerning the balance structure and its center were dependent on the global integration of information across a wide area of the display field, but especially from its central region. Last, the subtle changes in balance structure between versions resulted in lower ratings of balance being assigned to the less-balanced perturbations by the design professionals only; the other two participant groups evaluated overall balance of the versions as comparable. In experiment 2, eye movements of a different group of untrained individuals were recorded as they performed similar tasks on the art stimuli. It was found that disruption of the balance structure of the original representational but not abstract compositions resulted in different regions of the original and perturbed versions being visually explored. Findings of both experiments are related to theoretical notions of balance.


2009 ◽  
Vol 5 (S267) ◽  
pp. 464-464
Author(s):  
J. A. Vázquez-Mata ◽  
H. M. Hernández-Toledo ◽  
Changbom Park ◽  
Yun-Young Choi

We present a new catalog of isolated galaxies (coined as UNAM–KIAS) obtained through an automated systematic search. The 1520 isolated galaxies were found in ~ 1.4 steradians of the sky in the Sloan Digital Sky Survey Data Release 5 (SDSS DR5) photometry. The selection algorithm was implemented from a variation of the criteria developed by Karachentseva (1973), with full redshift information. This new catalog is aimed to carry out comparative studies of environmental effects and constraining the currently competing scenarios of galaxy formation and evolution.


Sign in / Sign up

Export Citation Format

Share Document