scholarly journals The H3K9 Methylation Writer SETDB1 and its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 750 ◽  
Author(s):  
Cruz-Tapias ◽  
Robin ◽  
Pontis ◽  
Maestro ◽  
Ait-Si-Ali

SETDB1 (SET Domain Bifurcated histone lysine methyltransferase 1) is a key lysine methyltransferase (KMT) required in embryonic stem cells (ESCs), where it silences transposable elements and DNA repeats via histone H3 lysine 9 tri-methylation (H3K9me3), independently of DNA methylation. The H3K9 methylation reader M-Phase Phosphoprotein 8 (MPP8) is highly expressed in ESCs and germline cells. Although evidence of a cooperation between H3K9 KMTs and MPP8 in committed cells has emerged, the interplay between H3K9 methylation writers and MPP8 in ESCs remains elusive. Here, we show that MPP8 interacts physically and functionally with SETDB1 in ESCs. Indeed, combining biochemical, transcriptomic and genomic analyses, we found that MPP8 and SETDB1 co-regulate a significant number of common genomic targets, especially the DNA satellite repeats. Together, our data point to a model in which the silencing of a class of repeated sequences in ESCs involves the cooperation between the H3K9 methylation writer SETDB1 and its reader MPP8.

2020 ◽  
Vol 48 (22) ◽  
pp. 12675-12688 ◽  
Author(s):  
Samuel E Ross ◽  
Allegra Angeloni ◽  
Fan-Suo Geng ◽  
Alex de Mendoza ◽  
Ozren Bogdanovic

Abstract In vertebrates, DNA methylation predominantly occurs at CG dinucleotides however, widespread non-CG methylation (mCH) has been reported in mammalian embryonic stem cells and in the brain. In mammals, mCH is found at CAC trinucleotides in the nervous system, where it is associated with transcriptional repression, and at CAG trinucleotides in embryonic stem cells, where it positively correlates with transcription. Moreover, CAC methylation appears to be a conserved feature of adult vertebrate brains. Unlike any of those methylation signatures, here we describe a novel form of mCH that occurs in the TGCT context within zebrafish mosaic satellite repeats. TGCT methylation is inherited from both male and female gametes, remodelled during mid-blastula transition, and re-established during gastrulation in all embryonic layers. Moreover, we identify DNA methyltransferase 3ba (Dnmt3ba) as the primary enzyme responsible for the deposition of this mCH mark. Finally, we observe that TGCT-methylated repeats are specifically associated with H3K9me3-marked heterochromatin suggestive of a functional interplay between these two gene-regulatory marks. Altogether, this work provides insight into a novel form of vertebrate mCH and highlights the substrate diversity of vertebrate DNA methyltransferases.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi49-vi50
Author(s):  
Junxia Zhang ◽  
Tianfu Yu ◽  
Ning Liu

Abstract Glioblastoma (GBM) displays cellular and genetical heterogeneity harboring a subpopulation of glioma stem cells (GSCs). Enhancer of zeste homolog 2 (EZH2), a histone lysine methyltransferase, is the core subunit of the polycomb repressor 2 (PRC2) complex, mediates gene transcriptional repression in both normal and tumor stem cells. An oncogenic role of EZH2 as a PRC2-dependent transcriptional silencer is well established; however, non-canonical functions of EZH2 are incompletely understood. Here we found a novel oncogenic mechanism for EZH2 in a PRC2-indenpend way in GSCs. Using HPLC-MS/MS and IP assay, EZH2 bound to HP1BP3 (heterochromatin protein 1 binding protein 3), a heterochromatin-related protein, with its pre-SET domain. Overexpression of H1P3B3 enhanced the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Intriguingly, H1PBP3 was up-regulated in high grade gliomas with proneural (PN) subtypes and had a high predictive value on prognosis in patients with PN gliomas. Furthermore, EZH2 and HP1BP3 co-activated the expression of WNT7B by blocking the methylation of H3K9, thereby increasing TMZ resistance and tumorigenicity of glioblastoma cells. Interestingly, inhibition of WNT7B autocrine via LGK974, a specific porcupine inhibitor, effectively reversed the TMZ resistance of both GSCs and GBM glioma cells expressing HP1BP3. Hence, targeting the PRC2-independent function of EZH2 is an effective approach to enhance the efficacy of treating GBM.


2021 ◽  
Author(s):  
Roberta Rapone ◽  
Laurence Del Maestro ◽  
Costas Bouyioukos ◽  
Sonia Albini ◽  
Paola Cruz-Tapias ◽  
...  

Abstract Embryonic stem cells (ESCs) fate is regulated both at transcriptional and post-transcriptional levels. Indeed, several studies showed that, in addition to gene transcription, mRNA stability and protein synthesis are finely tuned and strongly control the ESCs pluripotency and fate changes. An increasing number of RNA-binding proteins (RBPs) involved in post-transcriptional and translational regulation of gene expression has been identified as regulators of ESC identity. The major lysine methyltransferase Setdb1 is essential for the self-renewal and viability of ESCs. Setdb1 was primarily known to methylate the lysine 9 of histone 3 (H3K9) in the nucleus, where it regulates chromatin functions. However, Setdb1 is also massively localized in the cytoplasm, including in mouse ESCs, where its role remains unknown. Here we show that the cytoplasmic Setdb1 (cSetdb1) is essential for the survival of mESCs. Functional assays further demonstrate that cSetdb1 regulates gene expression post-transcriptionally, affecting the abundance of mRNAs and the rate of newly synthetized proteins. A yeast-two-hybrid assay shows that cSetdb1 interacts with several regulators of mRNA stability and protein translation machinery, such as the ESCs-specific E3 ubiquitin ligase and mRNA silencer Trim71/Lin41. Finally, proteomic analyses reveal that cSetdb1 is required for the integrity of Trim71 complexes involved in mRNA metabolism and translation. Altogether, our data uncover the essential cytoplasmic function of a firstly supposed nuclear “histone” lysine methyltransferase, Setdb1, and provide new insights into the cytoplasmic/post-transcriptional regulation of gene expression mediated by a key epigenetic regulator.


Reproduction ◽  
2001 ◽  
pp. 731-736 ◽  
Author(s):  
Y Ono ◽  
N Shimozawa ◽  
K Muguruma ◽  
S Kimoto ◽  
K Hioki ◽  
...  

In mammals, cloned individuals can be produced from somatic cells. The combined use of gene targeting in embryonic stem cells and cloning contributes to the investigation of gene function in mammals. However, one of the major limitations to cloning is the low viability of cloned embryos, leading typically to high rates of pre- and postnatal death. The present study investigated whether cloning efficiency is influenced by the procedural differences involved in using transfected embryonic stem cells arrested at M phase for cloning by both single and serial transfer. In contrast to a previous study, in which fibroblasts were used, in the present study using embryonic stem cells there was no difference in the rate of production of cloned pups after the use of a single or serial nuclear transfer, although the proportion of blastocysts (70% versus 51%) was significantly higher (P < 0.001) after serial nuclear transfer. After embryo transfer of 445 blastocysts, 218 (49%) implanted and 27 (6% of blastocysts transferred) live pups were born. Of these 27 pups, 23 developed to adults of apparently normal fertility. Of these adults, 39% (n = 9) were derived from targeted embryonic stem cells, which is similar to the proportion of targeted embryonic stem cells in the population used for cloning. This study showed that cloning with embryonic stem cells is a viable procedure resulting in the production of transgenic cloned adults.


2013 ◽  
Vol 33 (22) ◽  
pp. 4504-4516 ◽  
Author(s):  
Giorgio Giacomo Galli ◽  
Matteo Carrara ◽  
Chiara Francavilla ◽  
Kristian Honnens de Lichtenberg ◽  
Jesper Velgaard Olsen ◽  
...  

PRDM proteins belong to the SET domain protein family, which is involved in the regulation of gene expression. Although few PRDM members possess histone methyltransferase activity, the molecular mechanisms by which the other members exert transcriptional regulation remain to be delineated. In this study, we find that Prdm5 is highly expressed in mouse embryonic stem (mES) cells and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next-generation sequencing technologies, we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that although Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, cohesin, and TFIIIC and cooccupies genomic loci. In summary, our data indicate how Prdm5 modulates transcription by interacting with factors involved in genome organization in mouse embryonic stem cells.


Stem Cells ◽  
2009 ◽  
pp. N/A-N/A ◽  
Author(s):  
Felix Lohmann ◽  
Joseph Loureiro ◽  
Hui Su ◽  
Qing Fang ◽  
Hong Lei ◽  
...  

2021 ◽  
Author(s):  
Deepika Puri ◽  
Birgit Koschorz ◽  
Bettina Engist ◽  
Megumi Onishi-Seebacher ◽  
Devon Ryan ◽  
...  

Repeat element transcription plays a vital role in early embryonic development. Expression of repeats such as MERVL characterises mouse embryos at the 2-cell stage, and defines a 2-cell-like cell (2CLC) population in a mouse embryonic stem cell culture. Repeat element sequences contain binding sites for numerous transcription factors. We identify the forkhead domain transcription factor FOXD3 as a regulator of repeat element transcription in mouse embryonic stem cells. FOXD3 binds to and recruits the histone methyltransferase SUV39H1 to MERVL and major satellite repeats, consequentially repressing the transcription of these repeats by the establishment of the H3K9me3 heterochromatin modification. Notably, depletion of FOXD3 leads to the de-repression of MERVL and major satellite repeats as well as a subset of genes expressed in the 2-cell state, shifting the balance between the stem cell and 2 cell-like population in culture. Thus, FOXD3 acts as a negative regulator of repeat transcription, ascribing a novel function to this transcription factor.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jihoon Shin ◽  
Tae Wan Kim ◽  
Hyunsoo Kim ◽  
Hye Ji Kim ◽  
Min Young Suh ◽  
...  

Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.


Sign in / Sign up

Export Citation Format

Share Document