scholarly journals Chromosome and Genome Divergence between the Cryptic Eurasian Malaria Vector-Species Anopheles messeae and Anopheles daciae

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 165 ◽  
Author(s):  
Anastasia N. Naumenko ◽  
Dmitriy A. Karagodin ◽  
Andrey A. Yurchenko ◽  
Anton V. Moskaev ◽  
Olga I. Martin ◽  
...  

Chromosomal inversions are important drivers of genome evolution. The Eurasian malaria vector Anopheles messeae has five polymorphic inversions. A cryptic species, An. daciae, has been discriminated from An. messeae based on five fixed nucleotide substitutions in the internal transcribed spacer 2 (ITS2) of ribosomal DNA. However, the inversion polymorphism in An. daciae and the genome divergence between these species remain unexplored. In this study, we sequenced the ITS2 region and analyzed the inversion frequencies of 289 Anopheles larvae specimens collected from three locations in the Moscow region. Five individual genomes for each of the two species were sequenced. We determined that An. messeae and An. daciae differ from each other by the frequency of polymorphic inversions. Inversion X1 was fixed in An. messeae but polymorphic in An. daciae populations. The genome sequence comparison demonstrated genome-wide divergence between the species, especially pronounced on the inversion-rich X chromosome (mean Fst = 0.331). The frequency of polymorphic autosomal inversions was higher in An. messeae than in An. daciae. We conclude that the X chromosome inversions play an important role in the genomic differentiation between the species. Our study determined that An. messeae and An. daciae are closely related species with incomplete reproductive isolation.

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 835
Author(s):  
Gleb N. Artemov ◽  
Valentina S. Fedorova ◽  
Dmitriy A. Karagodin ◽  
Ilya I. Brusentsov ◽  
Elina M. Baricheva ◽  
...  

The Eurasian malaria vector Anopheles messeae is a widely spread and genetically diverse species. Five widespread polymorphic chromosomal inversions were found in natural populations of this mosquito. A cryptic species, Anopheles daciae, was differentiated from An. messeae by the presence of several nucleotide substitutions in the Internal Transcribed Spacer 2 (ITS2) region of ribosomal DNA. However, because of the absence of a high-quality reference cytogenetic map, the inversion polymorphisms in An. daciae and An. messeae remain poorly understood. Moreover, a recently determined heterogeneity in ITS2 in An. daciae questioned the accuracy of the previously used Restriction Fragment Length Polymorphism (RFLP) assay for species diagnostics. In this study, a standard-universal cytogenetic map was constructed based on orcein stained images of chromosomes from salivary glands for population studies of the chromosomal inversions that can be used for both An. messeae and An. daciae. In addition, a new ITS2-RFLP approach for species diagnostics was developed. Both methods were applied to characterize inversion polymorphism in populations of An. messeae and An. daciae from a single location in Western Siberia in Russia. The analysis demonstrates that cryptic species are remarkably different in their frequencies of chromosomal inversion variants. Our study supports previous observations that An. messeae has higher inversion polymorphism in all autosomes than the cryptic species An. daciae.


2016 ◽  
Vol 113 (46) ◽  
pp. 13109-13113 ◽  
Author(s):  
Igor B. Rogozin ◽  
Frida Belinky ◽  
Vladimir Pavlenko ◽  
Svetlana A. Shabalina ◽  
David M. Kristensen ◽  
...  

Serine is the only amino acid that is encoded by two disjoint codon sets so that a tandem substitution of two nucleotides is required to switch between the two sets. Previously published evidence suggests that, for the most evolutionarily conserved serines, the codon set switch occurs by simultaneous substitution of two nucleotides. Here we report a genome-wide reconstruction of the evolution of serine codons in triplets of closely related species from diverse prokaryotes and eukaryotes. The results indicate that the great majority of codon set switches proceed by two consecutive nucleotide substitutions, via a threonine or cysteine intermediate, and are driven by selection. These findings imply a strong pressure of purifying selection in protein evolution, which in the case of serine codon set switches occurs via an initial deleterious substitution quickly followed by a second, compensatory substitution. The result is frequent reversal of amino acid replacements and, at short evolutionary distances, pervasive homoplasy.


2019 ◽  
Author(s):  
Anastasia N. Naumenko ◽  
Dmitriy A. Karagodin ◽  
Andrey A. Yurchenko ◽  
Anton V. Moskaev ◽  
Olga I. Martin ◽  
...  

Abstract Background A dominant malaria vector, Anopheles messeae, is a highly polymorphic species with wide distribution throughout Eurasia. Five highly polymorphic inversions associated with the geographical distribution of the species have been reported. A sister species, An. daciae, was described and discriminated from An. messeae based on five fixed nucleotide substitutions in the internal transcribed spacer 2 (ITS2) of ribosomal DNA. However, the levels of genomic divergence, chromosomal variation, and ecological differentiation between these two cryptic species remain unexplored. Results In this study, we sequenced ITS2 and analyzed the inversion frequencies of 289 Anopheles larvae specimens collected from three locations in the Moscow region. We identified a high abundance of both An. messeae and An. daciae in all three locations. Five individual genomes for each species of An. messeae and An. daciae from one location were sequenced. Our study confirmed five previously described nucleotide substitutions in the ITS2 of An. messeae. However, we found that the ITS2 sequence in An. daciae was heterogenic in three of the five positions. Fixed nucleotide differences between An. messeae and An. daciae were found only in the last two positions. One mosquito was identified as a hybrid between An. messeae and An. daciae based on heterogeneous substitutions in all five positions. Although, the genomic sequence comparison demonstrated genome-wide divergence between the two species, which is especially pronounced on the X chromosome, an ADMIXTURE cluster analysis demonstrated the presence of two admixed individuals suggesting ongoing hybridization. Cytogenetic analysis demonstrated that An. messeae and An. daciae significantly differ from each other by their frequency of polymorphic inversions. Inversion X1 was fixed in An. messeae but was polymorphic in all An. daciae populations. The frequency of polymorphic autosomal inversions was higher in An. messeae than in An. daciae. The species composition was different among the studied locations suggesting species-specific ecological preferences. Conclusions Our study demonstrated that An. messeae and An. daciae represent closely related cryptic species with incomplete reproductive isolation that are able to maintain genomic differentiation in sympatry despite ongoing genetic introgression. The X chromosome plays an important role in the reproductive isolation between the species.


Genetics ◽  
2021 ◽  
Author(s):  
Thomas D Brekke ◽  
Emily C Moore ◽  
Shane C Campbell-Staton ◽  
Colin M Callahan ◽  
Zachary A Cheviron ◽  
...  

AbstractEmbryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 647-656
Author(s):  
William B Eggleston ◽  
Nac R Rim ◽  
Johng K Lim

Abstract The structure of chromosomal inversions mediated by hobo transposable elements in the Uc-1 X chromosome was investigated using cytogenetic and molecular methods. Uc-1 contains a phenotypically silent hobo element inserted in an intron of the Notch locus. Cytological screening identified six independent Notch mutations resulting from chromosomal inversions with one breakpoint at cytological position 3C7, the location of Notch. In situ hybridization to salivary gland polytene chromosomes determined that both ends of each inversion contained hobo and Notch sequences. Southern blot analyses showed that both breakpoints in each inversion had hobo-Notch junction fragments indistinguishable in structure from those present in the Uc-1 X chromosome prior to the rearrangements. Polymerase chain reaction amplification of the 12 hobo-Notch junction fragments in the six inversions, followed by DNA sequence analysis, determined that each was identical to one of the two hobo-Notch junctions present in Uc-1. These results are consistent with a model in which hobo-mediated inversions result from homologous pairing and recombination between a pair of hobo elements in reverse orientation.


Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1651-1659 ◽  
Author(s):  
Elena de la Casa-Esperón ◽  
J Concepción Loredo-Osti ◽  
Fernando Pardo-Manuel de Villena ◽  
Tammi L Briscoe ◽  
Jan Michel Malette ◽  
...  

AbstractWe observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/ 6-Pgk1a × DDK)F1 mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes.


2003 ◽  
Vol 12 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Christina K. Haston ◽  
Lap-Chee Tsui

The strain-dependent survival of cystic fibrosis (CF) knockout mice has been used to map a modifier of CF, Cfm1, in mice and, subsequently, in humans. To identify additional modifiers of the CF phenotype, in this study, the survival of F2 CF mice derived from a cross between congenic C57BL/6J CF and BALB/cJ CF heterozygotes was followed up to 12 wk of age. A genome-wide linkage scan completed in F2 CF mice revealed a chromosome 10 locus ( P = 1.2 × 10−4) to predict for intestinal distress in CF male mice. An X chromosome locus for which non-Mendelian inheritance favoring B6 alleles in the surviving CF mice and BALB alleles in mice of a control population, was identified. The survival of female mice, both F2 CF and F2 control, was linked to loci on chromosomes 3 and 5. The identification of additional putative CF modifier loci may permit further genetic dissection of the complex CF phenotype.


2022 ◽  
Vol 12 ◽  
Author(s):  
Inge Holm ◽  
Luisa Nardini ◽  
Adrien Pain ◽  
Emmanuel Bischoff ◽  
Cameron E. Anderson ◽  
...  

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences.Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.


2020 ◽  
Author(s):  
◽  
Alwyn Clark Go

Speciation occurs when reproductive barriers prevent the exchange of genetic information between individuals. A common form of reproductive barrier between species capable of interbreeding is hybrid sterility. Genomic incompatibilities between the divergent genomes of different species contribute to a reduction in hybrid fitness. These incompatibilities continue to accumulate after speciation, therefore, young divergent taxa with incomplete reproductive isolation are important in understating the genetics leading to speciation. Here, I use two Drosophila subspecies pairs. The first is D. willistoni consisting of D. w. willistoni and D. w. winge. The second subspecies pair is D. pseudoobscura, which is composed of D. p. pseudoobscura and D. p. bogotana. Both subspecies pairs are at the early stages of speciation and show incomplete reproductive isolation through unidirectional hybrid male sterility. In this thesis, I performed an exploratory survey of genome-wide expression analysis using RNA-sequencing on D. willistoni and determined the extent of regulatory divergence between the subspecies using allele-specific expression analysis. I found that misexpressed genes showed a degree of tissue specificity and that the sterile male hybrids had a higher proportion of misexpressed genes in the testes relative to the fertile hybrids. The analysis of regulatory divergence between this subspecies pair found a large (66-70%) proportion of genes with conserved regulatory elements. Of the genes showing evidence or regulatory divergence between subspecies, cis-regulatory divergence was more common than other types. In the D. pseudoobscura subspecies pair, I compared sequence and expression divergence and found no support for directional selection driving gene misexpression in their hybrids. Allele-specific expression analysis revealed that compensatory cis-trans mutations partly explained gene misexpression in the hybrids. The remaining hybrid misexpression occurs due to interacting gene networks or possible co-option of cis-regulatory elements by divergent transacting factors. Overall, the results of this thesis highlight the role of regulatory interactions in a hybrid genome and how these interactions could lead to hybrid breakdown by disrupting gene interaction networks.


Sign in / Sign up

Export Citation Format

Share Document