scholarly journals Molecular Pathways and Pigments Underlying the Colors of the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus 1758)

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 421
Author(s):  
Pierre-Louis Stenger ◽  
Chin-Long Ky ◽  
Céline Reisser ◽  
Julien Duboisset ◽  
Hamadou Dicko ◽  
...  

The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera—the species displaying the broadest range of colors. Three inner shell colors were investigated—red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper–Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.

Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 370 ◽  
Author(s):  
Jean-Pierre Cuif ◽  
Yannicke Dauphin ◽  
Gilles Luquet ◽  
Kadda Medjoubi ◽  
Andrea Somogyi ◽  
...  

A top-down approach to the mineralized structures and developmental steps that can be separated in the shells of Pinctada margaritifera was carried out. Detailed characterizations show that each of the two major layers usually taken into account (the outer prismatic layer and the inner nacreous layer) is actually the result of a complex process during which the microstructural patterns were progressively established. From its early growing stages in the deeper part of the periostracal grove up to the formation of the most inner nacreous layers, this species provides a demonstrative case study illustrating the leading role of specifically secreted organic structures as determinants of the crystallographic properties of the shell-building units. Gathering data established at various observational scales ranging from morphology to the nanometer level, this study allows for a reexamination of the recent and current biomineralization models.


2019 ◽  
Vol 64 (1-2) ◽  
pp. 75-82
Author(s):  
F. Nekvapil ◽  
◽  
Cs. Müller Molnár ◽  
S. Tomšić ◽  
S. Cintă Pinzaru ◽  
...  

2021 ◽  
Vol 113 ◽  
pp. 208-215
Author(s):  
Yu Shi ◽  
Xiaolan Pan ◽  
Meng Xu ◽  
Huiru Liu ◽  
Hanzhi Xu ◽  
...  
Keyword(s):  

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Ana M. Herrero ◽  
Claudia Ruiz-Capillas

Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.


2021 ◽  
Vol 22 (11) ◽  
pp. 5722
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Cinzia Marinaro ◽  
Claudio Curci ◽  
Marco Invernizzi ◽  
...  

Osteoarthritis (OA) is a painful and disabling disease that affects millions of patients. Its etiology is largely unknown, but it is most likely multifactorial. OA pathogenesis involves the catabolism of the cartilage extracellular matrix and is supported by inflammatory and oxidative signaling pathways and marked epigenetic changes. To delay OA progression, a wide range of exercise programs and naturally derived compounds have been suggested. This literature review aims to analyze the main signaling pathways and the evidence about the synergistic effects of these two interventions to counter OA. The converging nutrigenomic and physiogenomic intervention could slow down and reduce the complex pathological features of OA. This review provides a comprehensive picture of a possible signaling approach for targeting OA molecular pathways, initiation, and progression.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Christian Secchi ◽  
Paola Benaglio ◽  
Francesca Mulas ◽  
Martina Belli ◽  
Dwayne Stupack ◽  
...  

Abstract Background Adult granulosa cell tumor (aGCT) is a rare type of stromal cell malignant cancer of the ovary characterized by elevated estrogen levels. aGCTs ubiquitously harbor a somatic mutation in FOXL2 gene, Cys134Trp (c.402C < G); however, the general molecular effect of this mutation and its putative pathogenic role in aGCT tumorigenesis is not completely understood. We previously studied the role of FOXL2C134W, its partner SMAD3 and its antagonist FOXO1 in cellular models of aGCT. Methods In this work, seeking more comprehensive profiling of FOXL2C134W transcriptomic effects, we performed an RNA-seq analysis comparing the effect of FOXL2WT/SMAD3 and FOXL2C134W/SMAD3 overexpression in an established human GC line (HGrC1), which is not luteinized, and bears normal alleles of FOXL2. Results Our data shows that FOXL2C134W/SMAD3 overexpression alters the expression of 717 genes. These genes include known and novel FOXL2 targets (TGFB2, SMARCA4, HSPG2, MKI67, NFKBIA) and are enriched for neoplastic pathways (Proteoglycans in Cancer, Chromatin remodeling, Apoptosis, Tissue Morphogenesis, Tyrosine Kinase Receptors). We additionally expressed the FOXL2 antagonistic Forkhead protein, FOXO1. Surprisingly, overexpression of FOXO1 mitigated 40% of the altered genome-wide effects specifically related to FOXL2C134W, suggesting it can be a new target for aGCT treatment. Conclusions Our transcriptomic data provide novel insights into potential genes (FOXO1 regulated) that could be used as biomarkers of efficacy in aGCT patients.


2021 ◽  
Author(s):  
Xue Wang ◽  
Yuetong Wang ◽  
Zhaoyuan Fang ◽  
Hua Wang ◽  
Jian Zhang ◽  
...  

Abstract Somatic mutations of the chromatin remodeling gene ARID2 are observed in about 7% of human lung adenocarcinoma (LUAD). However, the role of ARID2 in the pathogenesis of LUAD remains largely unknown. Here we find that ARID2 expression is decreased during the malignant progression of both human and mice LUAD. Using two KrasG12D-based genetically engineered murine models (GEMM), we demonstrate that ARID2 knockout significantly promotes lung cancer malignant progression and shortens the overall survival. Consistently, ARID2 knockdown significantly promotes cell proliferation in human and mice lung cancer cells. Through integrative analyses of Chip-Seq and RNA-Seq data, we find that Hspa1a is up-regulated by Arid2 loss. Knockdown of Hspa1a specifically inhibits malignant progression of Arid2-deficient but not Arid2-wt lung cancers in both cell lines as well as animal models. Treatment with Hspa1a inhibitor could significantly inhibit the malignant progression of lung cancer with Arid2 deficiency. Together, our findings establish ARID2 as an important tumor suppressor in LUAD with novel mechanistic insights, and further identify HSPA1A as a potential therapeutic target in ARID2-deficient LUAD.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii401-iii401
Author(s):  
Sarah Injac ◽  
L Frank Huang ◽  
Stephen Mack ◽  
Frank Braun ◽  
Yuchen Du ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Despite major advances in our understanding of the biology of MB, novel treatments remain urgently needed. Using a chemical-genomics driven drug repositioning strategy, we identified the cardiac glycoside family of compounds as potential treatments for Group 3 MB. We subsequently demonstrated that single-agent treatment with digoxin prolongs survival in a patient-derived xenograft model (PDOX) of Group 3 MB to a degree comparable to radiation therapy, a mainstay in the treatment of MB. Finally, we examined the mechanism of digoxin-mediated cell killing using RNA-seq. This work identified LHX9, a member of the LIM homeobox family of transcription factors, as the gene most significantly down-regulated following treatment (Huang and Injac et al, Sci Trans Medicine, 2018). Homologs of LHX9 play key roles in cerebellar development via spatially and temporally restricted expression and LHX9 has been proposed as a core transcription factor (TF) in the regulatory circuitry of Group 3 tumors. Loss of function of other core TFs has been shown to impact MB growth. The role of LHX9 in MB, however, has not been previously experimentally evaluated. We now report that knockdown of LHX9 in MB-derived cell lines results in marked growth inhibition raising the possibility that loss of LHX9 plays a major role in digoxin-mediated cell killing and that LHX9 represents a key dependency required for the growth of Group 3 MB. Clinical targeting of core TFs would represent a novel approach to targeting this devastating disease.


Sign in / Sign up

Export Citation Format

Share Document