scholarly journals Genetic Causes of Oculocutaneous Albinism in Pakistani Population

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 492
Author(s):  
Zureesha Sajid ◽  
Sairah Yousaf ◽  
Yar M. Waryah ◽  
Tauqeer A. Mughal ◽  
Tasleem Kausar ◽  
...  

Melanin pigment helps protect our body from broad wavelength solar radiation and skin cancer. Among other pigmentation disorders in humans, albinism is reported to manifest in both syndromic and nonsyndromic forms as well as with varying inheritance patterns. Oculocutaneous albinism (OCA), an autosomal recessive nonsyndromic form of albinism, presents as partial to complete loss of melanin in the skin, hair, and iris. OCA has been known to be caused by pathogenic variants in seven different genes, so far, according to all the currently published population studies. However, the detection rate of alleles causing OCA varies from 50% to 90%. One of the significant challenges of uncovering the pathological variant underlying disease etiology is inter- and intra-familial locus heterogeneity. This problem is especially pertinent in highly inbred populations. As examples of such familial locus heterogeneity, we present nine consanguineous Pakistani families with segregating OCA due to variants in one or two different known albinism-associated genes. All of the identified variants are predicted to be pathogenic, which was corroborated by several in silico algorithms and association with diverse clinical phenotypes. We report an individual affected with OCA carries heterozygous, likely pathogenic variants in TYR and OCA2, raising the question of a possible digenic inheritance. Altogether, our study highlights the significance of exome sequencing for the complete genetic diagnosis of inbred families and provides the ramifications of potential genetic interaction and digenic inheritance of variants in the TYR and OCA2 genes.

Author(s):  
M Adela Mansilla ◽  
Ramakrishna R Sompallae ◽  
Carla J Nishimura ◽  
Anne E Kwitek ◽  
Mycah J Kimble ◽  
...  

Abstract Background The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients. Methods We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing. Results The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de’Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion–deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis. Conclusion Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.


Cardiology ◽  
2017 ◽  
Vol 137 (4) ◽  
pp. 256-260 ◽  
Author(s):  
Francesca Gualandi ◽  
Fatima Zaraket ◽  
Michele Malagù ◽  
Giulia Parmeggiani ◽  
Cecilia Trabanelli ◽  
...  

Brugada syndrome is a primary arrhythmic syndrome that accounts for 20% of all sudden cardiac death cases in individuals with a structurally normal heart. Pathogenic variants associated with Brugada syndrome have been identified in over 19 genes, with SCN5A as a pivotal gene accounting for nearly 30% of cases. In contrast to other arrhythmogenic channelopathies (such as long QT syndrome), digenic inheritance has never been reported in Brugada syndrome. Exploring 66 cardiac genes using a new custom next-generation sequencing panel, we identified a double heterozygosity for pathogenic mutations in SCN5A and TRPM4 in a Brugada syndrome patient. The parents were heterozygous for each variation. This novel finding highlights the role of mutation load in Brugada syndrome and strongly suggests the adoption of a gene panel to obtain an accurate genetic diagnosis, which is mandatory for risk stratification, prevention, and therapy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-38-SCI-38 ◽  
Author(s):  
Kathleen Freson

Abstract Inherited platelet disorders (IPDs) comprise a heterogeneous group of disorders with a complex genetic etiology, characterized by impairments in platelet formation, morphology and function. Since the implementation of next generation sequencing (NGS) in 2009, the gene list for diagnosis of IPDs rapidly expanded from 39 to 53 genes. A diagnostic high-throughput targeted NGS platform (referred to as ThromboGenomics; www.thrombogenomics.org.uk) was very recently described as an affordable DNA-based test of 76 genes to diagnose patients 'suspected of having a known inherited platelet, thrombotic or bleeding disorder' (BPD). When the phenotype is strongly indicative of the presence of a particular disease etiology but the variants are unknown, sensitivity remains high (>90% based on 61 samples) while patients included with an uncertain disease such as delta storage pool disease, mostly receive no genetic diagnosis (only 10% a genetic diagnosis was obtained). Such IPDs should be included in gene discovery NGS programs such as the BRIDGE-BPD2 study. For this study, whole genome sequencing results of the DNA samples of nearly 1000 probands with uncharacterized IPDs, analyzed using assigned Human Phenotype Ontology (HPO) terms have helped to identify pathogenic variants in almost 20% of cases. New clustering algorithms to group cases with similar phenotypes have been used to identify two novel IPD genes (DIAPH1 and SRC2) and several putative ones. Still many IPD patients don't receive a genetic diagnosis. A majority of cases either harbor pathogenic variants in unknown genes or in regulatory regions or are the result of a digenic mode of inheritance. NGS combined with data from RNA-seq, ChIP-seq, gene regulatory network analysis, epigenome, proteomics and mouse knock-out studies amongst others will also help explore the non-coding regulatory space and gene-gene interactions. Given the existence of many non-pathogenic variants in any individual's genome, the main challenge faced by researchers when interpreting NGS data of an IPD case is determining which variants are causing the disorder.3Interpreting the functional consequences of novel rare variants is not easy and it is extremely important to apply rigorous standards when assigning pathogenicity. Clinical genomic data are the same as other complex medical data and should be interpreted by a multidisciplinary team comprising typically a statistical geneticist, clinical geneticist, and genetic counselors, who have the skills to interpret these results in the context of the test methodology, the theoretical background of genetics, Bayesian reasoning, and a myriad of other factors. 1. Simeoni I, Stephens JC, Hu F, et al. A comprehensive high-throughput sequencing test for the diagnosis of inherited bleeding, thrombotic and platelet disorders. Blood. 2016; 127: 279. 2. Turro E, Greene D, Wijgaerts A, et al. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci Transl Med. 2016;8:328. 3. Lentaigne C, Freson K, Laffan MA, et al. Inherited platelet disorders: towards DNA-based diagnosis. Blood. 2016; 127: 2814. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Do Hyeon Cha ◽  
Heon Yung Gee ◽  
Raul Cachau ◽  
Jong Mun Choi ◽  
Daeui Park ◽  
...  

Abstract Differentiating between inherited renal hypouricemia and transient hypouricemic status is challenging. Here, we aimed to describe the genetic background of hypouricemia patients using whole-exome sequencing (WES) and assess the feasibility for genetic diagnosis using two founder variants in primary screening. We selected all cases (N = 31) with extreme hypouricemia (<1.3 mg/dl) from a Korean urban cohort of 179,381 subjects without underlying conditions. WES and corresponding downstream analyses were performed for the discovery of rare causal variants for hypouricemia. Two known recessive variants within SLC22A12 (p.Trp258*, pArg90His) were identified in 24 out of 31 subjects (77.4%). In an independent cohort, we identified 50 individuals with hypouricemia and genotyped the p.Trp258* and p.Arg90His variants; 47 of the 50 (94%) hypouricemia cases were explained by only two mutations. Four novel coding variants in SLC22A12, p.Asn136Lys, p.Thr225Lys, p.Arg284Gln, and p.Glu429Lys, were additionally identified. In silico studies predict these as pathogenic variants. This is the first study to show the value of genetic diagnostic screening for hypouricemia in the clinical setting. Screening of just two ethnic-specific variants (p.Trp258* and p.Arg90His) identified 87.7% (71/81) of Korean patients with monogenic hypouricemia. Early genetic identification of constitutive hypouricemia may prevent acute kidney injury by avoidance of dehydration and excessive exercise.


2021 ◽  
Author(s):  
Christina E. Hoei-Hansen ◽  
Marie L. B. Tygesen ◽  
Morten Dunø ◽  
John Vissing ◽  
Martin Ballegaard ◽  
...  

Abstract Aim The diagnostic workup in patients with delayed motor milestones suspected of having either myopathy or a congenital myasthenic syndrome is complex. Our hypothesis was that performance of a muscle biopsy and neurophysiology including stimulated single-fiber electromyography during an anesthetic procedure, combined with genetic testing has a high diagnostic quality. Materials and Methods Clinical and paraclinical data were retrospectively collected from 24 patients aged from 1 month to 10 years (median: 5.2 years). Results Neurophysiology examination was performed in all patients and was abnormal in 11 of 24. No patients had findings suggestive of a myasthenic syndrome. Muscle biopsy was performed in 21 of 24 and was normal in 16. Diagnostic findings included nemaline rods, inclusion bodies, fiber size variability, and type-II fiber atrophy. Genetic testing with either a gene panel or exome sequencing was performed in 18 of 24 patients, with pathogenic variants detected in ACTA1, NEB, SELENON, GRIN2B, SCN8A, and COMP genes. Conclusion Results supporting a neuromuscular abnormality were found in 15 of 24. In six patients (25%), we confirmed a genetic diagnosis and 12 had a clinical neuromuscular diagnosis. The study suggests that combined use of neurophysiology and muscle biopsy in cases where genetic testing does not provide a diagnosis can be useful in children with delayed motor milestones and clinical evidence of a neuromuscular disease.


2020 ◽  
Vol 33 (6) ◽  
pp. 691-701 ◽  
Author(s):  
Tatsushi Tanaka ◽  
Kohei Aoyama ◽  
Atsushi Suzuki ◽  
Shinji Saitoh ◽  
Haruo Mizuno

AbstractObjectivesCongenital hypothyroidism (CH) is the most common congenital endocrine disorder. Recent advances in genetic testing have revealed its causative mutations in some CH patients. However, the underlying etiology remains unknown in most patients. This study aimed to perform clinical and genetic investigation in Japanese CH patients to uncover genotype-phenotype correlations.MethodsWe enrolled 136 Japanese patients with transient or permanent CH between April 2015 and March 2017, and performed next-generation sequencing of 19 genes implicated in CH.ResultsWe identified potentially pathogenic bi-allelic variants in DUOX2, TSHR, and TPO in 19, 5, and 1 patient, respectively (autosomal recessive), and a potentially pathogenic mono-allelic variant in NKX2-1 (autosomal dominant) in 1 patient. Molecular genetic diagnosis was highly suggested in 26 patients (19%) from 23 families. We also detected a potentially pathogenic mono-allelic variant in five recessive genes (DUOX2, TSHR, TG, DUOXA2, and TPO) in 31 unrelated patients (23%), although the pathogenicity of these variants remains inconclusive. Patients with bi-allelic DUOX2 variants showed a more severe clinical presentation in infancy than those with bi-allelic TSHR variants. However, this trend reversed beyond infancy. There were no statistical differences in initial thyroid stimulating hormone, free thyroxine, thyroglobulin, and levothyroxine dose as of March 2017 between patients with bi-allelic and mono-allelic DUOX2 variants.ConclusionsThe prevalence of potentially-pathogenic variants in Japanese CH patients was similar to that found by previous reports. Our study demonstrates a genotype-phenotype correlation in Japanese CH patients.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chang Bao Xu ◽  
Xu Dong Zhou ◽  
Hong En Xu ◽  
Yong Li Zhao ◽  
Xing Hua Zhao ◽  
...  

Abstract Background Primary hyperoxaluria(PH)is a rare autosomal recessive genetic disease that contains three subtypes (PH1, PH2 and PH3). Approximately 80% of PH patients has been reported as subtype PH1, this subtype of PH has been related to a higher risk of renal failure at any age. Several genetic studies indicate that the variants in gene AGXT are responsible for the occurrence of PH1. However, the population heterogeneity of the variants in AGXT makes the genetic diagnosis of PH1 more challenging as it is hard to locate each specific variant. It is valuable to have a complete spectrum of AGXT variants from different population for early diagnosis and clinical treatments of PH1. Case presentation In this study, We performed high-throughput sequencing and genetic analysis of a 6-year-old male PH1 patient from a Chinese family. Two variants (c.346G > A: p.Gly116Arg; c.864G > A: p.Trp288X) of the gene AGXT were identified. We found a nonsense variant (c.864G > A: p.Trp288X) that comes from the proband’s mother and has never been reported previously. The other missense variant (c.346G > A: p.Gly116Arg) was inherited from his father and has been found previously in a domain of aminotransferase, which plays an important role in the function of AGT protein. Furthermore, we searched 110 pathogenic variants of AGXT that have been reported worldwide in healthy local Chinese population, none of these pathogenic variants was detected in the local genomes. Conclusions Our research provides an important diagnosis basis for PH1 on the genetic level by updating the genotype of PH1 and also develops a better understanding of the variants in AGXT by broadening the variation database of AGXT according to the Chinese reference genome.


2020 ◽  
Vol 28 (12) ◽  
pp. 1763-1768
Author(s):  
Thomas Bourinaris ◽  
◽  
Damian Smedley ◽  
Valentina Cipriani ◽  
Isabella Sheikh ◽  
...  

AbstractHereditary spastic paraplegia (HSP) is a group of heterogeneous inherited degenerative disorders characterized by lower limb spasticity. Fifty percent of HSP patients remain yet genetically undiagnosed. The 100,000 Genomes Project (100KGP) is a large UK-wide initiative to provide genetic diagnosis to previously undiagnosed patients and families with rare conditions. Over 400 HSP families were recruited to the 100KGP. In order to obtain genetic diagnoses, gene-based burden testing was carried out for rare, predicted pathogenic variants using candidate variants from the Exomiser analysis of the genome sequencing data. A significant gene-disease association was identified for UBAP1 and HSP. Three protein truncating variants were identified in 13 patients from 7 families. All patients presented with juvenile form of pure HSP, with median age at onset 10 years, showing autosomal dominant inheritance or de novo occurrence. Additional clinical features included parkinsonism and learning difficulties, but their association with UBAP1 needs to be established.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 282
Author(s):  
Brais Bea-Mascato ◽  
Carlos Solarat ◽  
Irene Perea-Romero ◽  
Teresa Jaijo ◽  
Fiona Blanco-Kelly ◽  
...  

Alström syndrome (ALMS) is an ultrarare disease with an estimated prevalence lower than 1 in 1,000,000. It is associated with disease-causing mutations in the Alström syndrome 1 (ALMS1) gene, which codifies for a structural protein of the basal body and centrosomes. The symptomatology involves nystagmus, type 2 diabetes mellitus (T2D), obesity, dilated cardiomyopathy (DCM), neurodegenerative disorders and multiorgan fibrosis. We refined the clinical and genetic diagnosis data of 12 patients from 11 families, all of them from Spain. We also studied the allelic frequency of the different variants present in this cohort and performed a haplotype analysis for the most prevalent allele. The genetic analysis revealed 2 novel homozygous variants located in the exon 8, p.(Glu929Ter) and p.(His1808GlufsTer20) in 2 unrelated patients. These 2 novel variants were classified as pathogenic after an in silico experiment (computer analysis). On the other hand, 2 alleles were detected at a high frequency in our cohort: p.(Tyr1714Ter) (25%) and p.(Ser3872TyrfsTer19) (16.7%). The segregation analysis showed that the pathogenic variant p.(Tyr1714Ter) in 3 families is linked to a rare missense polymorphism, p.(Asn1787Asp). In conclusion, 2 novel pathological mutations have been discovered in homozygosis, as well as a probable founder effect in 3 unrelated families.


2019 ◽  
Vol 8 (5) ◽  
pp. 590-595 ◽  
Author(s):  
Marilena Nakaguma ◽  
Fernanda A Correa ◽  
Lucas S Santana ◽  
Anna F F Benedetti ◽  
Ricardo V Perez ◽  
...  

Aim Congenital hypopituitarism has an incidence of 1:3500–10,000 births and is defined by the impaired production of pituitary hormones. Early diagnosis has an impact on management and genetic counselling. The clinical and genetic heterogeneity of hypopituitarism poses difficulties to select the order of genes to analyse. The objective of our study is to screen hypopituitarism genes (candidate and previously related genes) simultaneously using a target gene panel in patients with congenital hypopituitarism. Methods Screening of 117 subjects with congenital hypopituitarism for pathogenic variants in 26 genes associated with congenital hypopituitarism by massively parallel sequencing using a customized target gene panel. Results We found three novel pathogenic variants in OTX2 c.295C>T:p.Gln99*, GLI2 c.1681G>T:p.Glu561* and GHRHR c.820_821insC:p.Asp274Alafs*113, and the previously reported variants in GHRHR c.57+1G>A and PROP1 [c.301_302delAG];[c.109+1G>A]. Conclusions Our results indicate that a custom-designed panel is an efficient method to screen simultaneously variants of biological and clinical relevance for congenital GH deficiency. A genetic diagnosis was possible in 5 out of 117 (4%) patients of our cohort. We identified three novel pathogenic variants in GHRHR, OTX2 and GLI2 expanding the spectrum of variants associated with congenital hypopituitarism.


Sign in / Sign up

Export Citation Format

Share Document