scholarly journals Compound Heterozygote of Point Mutation and Chromosomal Microdeletion Involving OTUD6B Coinciding with ZMIZ1 Variant in Syndromic Intellectual Disability

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1583
Author(s):  
Tim Phetthong ◽  
Arthaporn Khongkrapan ◽  
Natini Jinawath ◽  
Go-Hun Seo ◽  
Duangrurdee Wattanasirichaigoon

The OTUD6B and ZMIZ1 genes were recently identified as causes of syndromic intellectual disability (ID) with shared phenotypes of facial dysmorphism, distal limb anomalies, and seizure disorders. OTUD6B -and ZMIZ1 -related ID are inherited in autosomal recessive and autosomal dominant patterns, respectively. We report a 5-year-old girl with developmental delay, facial phenotypes resembling Williams syndrome, and cardiac defects. The patient also had terminal broadening of the fingers and polydactyly. Cytogenomic microarray (CMA), whole exome sequencing (WES), and mRNA analysis were performed. The CMA showed a paternally inherited 0.118 Mb deletion of 8q21.3, chr8:92084087–92202189, with OTUD6B involved. The WES identified a hemizygous OTUD6B variant, c.873delA (p.Lus291AsnfsTer3). The mother was heterozygous for this allele. The WES also demonstrated a heterozygous ZMIZ1 variant, c.1491 + 2T > C, in the patient and her father. This ZMIZ1 variant yielded exon 14 skipping, as evidenced by mRNA study. We suggest that Williams syndrome-like phenotypes, namely, periorbital edema, hanging cheek, and long and smooth philtrum represent expanded phenotypes of OTUD6B -related ID. Our data expand the genotypic spectrum of OTUD6B - and ZMIZ1 -related disorders. This is the first reported case of a compound heterozygote featuring point mutation, chromosomal microdeletion of OTUD6B, and the unique event of OTUD6B, coupled with ZMIZ1 variants.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amjad Khan ◽  
Muhammad Umair ◽  
Rania Abdulfattah Sharaf ◽  
Muhammad Ismail Khan ◽  
Amir Ullah ◽  
...  

AbstractCongenital hypothyroidism (CH) is one of the most common hereditary disorders affecting neonates worldwide. CH is a multifactorial complex disorder and can be caused by either environmental factors or genetic factors. We studied one Pakistani family with segregating mutations in CH inherited in an autosomal recessive manner. Using whole-exome sequencing (WES), we found a novel homozygous missense variant (c.2315A>G; p.Tyr772Cys) in the thyroid peroxidase (TPO) gene. Different bioinformatics prediction tools and Sanger sequencing were performed to verify the identified variant. Our findings highlight the importance of this gene in causing CH and mild-intellectual disability (ID) in two affected brothers. WES is a convenient and useful tool for the clinical diagnosis of CH and other associated disorders.


2020 ◽  
Author(s):  
Talal J. Qazi ◽  
Qiao Wu ◽  
Ailikemu Aierken ◽  
Daru Lu ◽  
Ihtisham Bukhari ◽  
...  

Abstract Background: Loss of function mutations in the spermine synthase gene (SMS) have been reported to cause a rare X-linked intellectual disability known as Snyder-Robinson Syndrome (SRS). Besides intellectual disability, SRS is also characterized by reduced bone density, osteoporosis and facial dysmorphism. SRS phenotypes evolve with age from childhood to adulthood. Methods: Whole exome sequencing was performed to know the causative gene/pathogenic variant. Later we confirmed the pathogenic variant through Sanger sequencing. Furthermore, we also performed the mutational analysis through HOPE SERVER and SWISS-MODEL. Also, radiographs were also obtained for affected individual to confirm the disease features. Results: In this article, we report the first Pakistani family consisting of three patients with SRS and a novel missense pathogenic variant in the SMS gene (c.905 C>T p.(Ser302Leu)). In addition to the typical phenotypes, one patient presented with early-onset seizures. Clinical features, genetic and in-silico analysis linked the affected patients of the family with Snyder-Robinson and suggest that this novel mutation affects the spermine synthase activity Conclusion: A novel missense variant in the SMS, c.905C >T p. (Ser302Leu), causing Snyder- Robinson Syndrome (SRS) is reported in three members of Pakistani Family.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephen F. Pastore ◽  
Tahir Muhammad ◽  
Ricardo Harripaul ◽  
Rebecca Lau ◽  
Muhammad Tariq Masood Khan ◽  
...  

AbstractIn a multi-branch family from Pakistan, individuals presenting with palmoplantar keratoderma segregate in autosomal dominant fashion, and individuals with intellectual disability (ID) segregate in apparent autosomal recessive fashion. Initial attempts to identify the ID locus using homozygosity-by-descent (HBD) mapping were unsuccessful. However, following an assumption of locus heterogeneity, a reiterative HBD approach in concert with whole exome sequencing (WES) was employed. We identified a known disease-linked mutation in the polymicrogyria gene, ADGRG1, in two affected members. In the remaining two (living) affected members, HBD mapping cross-referenced with WES data identified a single biallelic frameshifting variant in the gene encoding retinol dehydrogenase 14 (RDH14). Transcription data indicate that RDH14 is expressed in brain, but not in retina. Magnetic resonance imaging for the individuals with this RDH14 mutation show no signs of polymicrogyria, however cerebellar atrophy was a notable feature. RDH14 in HEK293 cells localized mainly in the nucleoplasm. Co-immunoprecipitation studies confirmed binding to the proton-activated chloride channel 1 (PACC1/TMEM206), which is greatly diminished by the mutation. Our studies suggest RDH14 as a candidate for autosomal recessive ID and cerebellar atrophy, implicating either disrupted retinoic acid signaling, or, through PACC1, disrupted chloride ion homeostasis in the brain as a putative disease mechanism.


2020 ◽  
Author(s):  
Talal J. Qazi ◽  
Qiao Wu ◽  
Ailikemu Aierken ◽  
Daru Lu ◽  
Ihtisham Bukhari ◽  
...  

Abstract Background: Loss of function mutations in the spermine synthase gene (SMS) have been reported to cause a rare X-linked intellectual disability known as Snyder-Robinson Syndrome (SRS). Besides intellectual disability, SRS is also characterized by reduced bone density, osteoporosis and facial dysmorphism. SRS phenotypes evolve with age from childhood to adulthood. Methods: Whole exome sequencing was performed to know the causative gene/pathogenic variant. Later we confirmed the pathogenic variant through Sanger sequencing. Furthermore, we also performed the mutational analysis through HOPE SERVER and SWISS-MODEL. Also, radiographs were also obtained for affected individual to confirm the disease features. Results: In this article, we report the first Pakistani family consisting of three patients with SRS and a novel missense pathogenic variant in the SMS gene (c.905 C>T p.(Ser302Leu)). In addition to the typical phenotypes, one patient presented with early-onset seizures. Clinical features, genetic and in-silico analysis linked the affected patients of the family with Snyder-Robinson and suggest that this novel mutation affects the spermine synthase activityConclusion: A novel missense variant in the SMS, c.905C >T p. (Ser302Leu), causing Snyder- Robinson Syndrome (SRS) is reported in three members of Pakistani Family.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Memoona Rasheed ◽  
Valeed Khan ◽  
Ricardo Harripaul ◽  
Maimoona Siddiqui ◽  
Madiha Amin Malik ◽  
...  

Abstract Background Intellectual disability (ID) is a phenotypically and genetically heterogeneous disorder. Methods In this study, genome wide SNP microarray and whole exome sequencing are used for the variant identification in eight Pakistani families with ID. Beside ID, most of the affected individuals had speech delay, facial dysmorphism and impaired cognitive abilities. Repetitive behavior was observed in MRID143, while seizures were reported in affected individuals belonging to MRID137 and MRID175. Results In two families (MRID137b and MRID175), we identified variants in the genes CCS and ELFN1, which have not previously been reported to cause ID. In four families, variants were identified in ARX, C5orf42, GNE and METTL4. A copy number variation (CNV) was identified in IL1RAPL1 gene in MRID165. Conclusion These findings expand the existing knowledge of variants and genes implicated in autosomal recessive and X linked ID.


2016 ◽  
Author(s):  
Ricardo Harripaul ◽  
Nasim Vasli ◽  
Anna Mikhailov ◽  
Muhammad Arshad Rafiq ◽  
Kirti Mittal ◽  
...  

Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations(ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7,andUSP44),and missense mutations include the first reports of variants inBDNForTET1associated with ID. The genes identified also showed overlap withde novogene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yonatan Perez ◽  
Ohad Wormser ◽  
Yair Sadaka ◽  
Ruth Birk ◽  
Ginat Narkis ◽  
...  

Mutations in genes involved in the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor cause autosomal recessive glycosylation defects, with a wide phenotypic spectrum of intellectual disability, seizures, minor facial dysmorphism, hypotonia, and elevated serum alkaline phosphatase. We now describe consanguineous Bedouin kindred presenting with an autosomal recessive syndrome of intellectual disability and elevated serum alkaline phosphatase. Genome-wide linkage analysis identified 6 possible disease-associated loci. Whole-exome sequencing followed by Sanger sequencing validation identified a single variant in PGAP2 as the disease-causing mutation (C.554G>A; p.185(R>Q)), segregating as expected within the kindred and not found in 150 Bedouin controls. The mutation replaces a highly conserved arginine residue with glutamine within the Frag1 (FGF receptor activating) domain of PGAP2. Interestingly, this mutation is a known dbSNP variant (rs745521288, build 147) with a very low allele frequency (0.00000824 in dbSNP, no homozygotes reported), highlighting the fact that dbSNP variants should not be automatically ruled out as disease-causing mutations. We further showed that PGAP2 is ubiquitously expressed, but in line with the disease phenotype, it is highly transcribed in human brain, skeletal muscle, and liver. Interestingly, a mild phenotype of slightly elevated serum levels of alkaline phosphatase and significant learning disabilities was observed in heterozygous carriers.


Author(s):  
Majid Alfadhel ◽  
Sandra Sirrs ◽  
Paula J. Waters ◽  
András Szeitz ◽  
Eduard Struys ◽  
...  

Background:Pyridoxine dependent epilepsy (PDE) is characterized by neonatal epileptic encepahalopathy responsive to pharmacological doses of vitamin B6. Recently an autosomal recessive deficiency in Antiquitin (ALDH7A1), a gene involved in the catabolism of lysine has been identified as the underlying cause.Case report:In 21 and 23 year-old sisters, who had presented with neonatal / early infantile onset seizures, PDE was confirmed by elevated urinary alpha aminoadipic- 6- semialdehyde (α-AASA) excretion and compound heterozygosity for two known ALDH7A1 missense mutations. Although epilepsy was well controlled upon treatment with pyridoxine, thiamine, phenytoin and carbamazepine since early infancy, both had developmental delay with prominent speech delay as children. As adults, despite the same genetic background and early treatment with pyridoxine, their degree of intellectual disability (ID) differed widely. While the older sister's cognitive functions were in the moderate ID range and she was not able to live unattended, the younger sister had only mild ID and was able to live independently.Conclusion:Although seizures are a defining feature of PDE, other disease manifestations can vary widely even within the same family. Adult neurologists should be aware that the diagnosis of PDE can be delayed and PDE should be considered in the differential diagnosis of adults with seizure disorders dating from childhood.


2021 ◽  
pp. mcs.a006130
Author(s):  
Ryan J Patrick ◽  
Jill M Weimer ◽  
Laura Davis-Keppen ◽  
Megan L Landsverk

Pathogenic variants in CKAP2L have previously been reported in Filippi Syndrome (FS), a rare autosomal recessive, craniodigital syndrome characterized by microcephaly, syndactyly, short stature, intellectual disability, and dysmorphic facial features. To date, fewer than ten patients with pathogenic variants in CKAP2L associated with FS have been reported. All of the previously reported probands have presumed loss-of-function variants (frameshift, canonical splice site, starting methionine) and all but one have been homozygous for a pathogenic variant. Here we describe two brothers who presented with microcephaly, micrognathia, syndactyly, dysmorphic features, and intellectual disability. Whole exome sequencing of the family identified a missense variant, c.2066G>A (p.Arg689His), in trans with a frameshift variant, c.1169_1173del (p.Ile390LysfsTer4), in CKAP2L. To our knowledge, these are the first patients with FS to be reported with a missense variant in CKAP2L and only the second family to be reported with two variants in trans.


2020 ◽  
Author(s):  
Talal J. Qazi ◽  
Qiao Wu ◽  
Ailikemu Aierken ◽  
Daru Lu ◽  
Ihtisham Bukhari ◽  
...  

Abstract Background: Loss of function mutations in the spermine synthase gene (SMS) have been reported to cause a rare X-linked intellectual disability known as Snyder-Robinson Syndrome (SRS). Besides intellectual disability, SRS is also characterized by reduced bone density, osteoporosis and facial dysmorphism. SRS phenotypes evolve with age from childhood to adulthood. Methods: Whole exome sequencing was performed to know the causative gene/pathogenic variant. Later we confirmed the pathogenic variant through Sanger sequencing. Furthermore, we also performed the mutational analysis through HOPE SERVER and SWISS-MODEL. Also, radiographs were also obtained for affected individual to confirm the disease features. Results: In this article, we report the first Pakistani family consisting of three patients with SRS and a novel missense pathogenic variant in the SMS gene (c.905 C>T p.(Ser302Leu)). In addition to the typical phenotypes, one patient presented with early-onset seizures. Clinical features, genetic and in-silico analysis linked the affected patients of the family with Snyder-Robinson and suggest that this novel mutation affects the spermine synthase activityConclusion: A novel missense variant in the SMS, c.905C >T p. (Ser302Leu), causing Snyder- Robinson Syndrome (SRS) is reported in three members of Pakistani Family.


Sign in / Sign up

Export Citation Format

Share Document