scholarly journals Engineering-Geological Features Supporting a Seismic-Driven Multi-Hazard Scenario in the Lake Campotosto Area (L’Aquila, Italy)

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 107
Author(s):  
Benedetta Antonielli ◽  
Francesca Bozzano ◽  
Matteo Fiorucci ◽  
Salomon Hailemikael ◽  
Roberto Iannucci ◽  
...  

This paper aims to describe the seismic-driven multi-hazard scenario of the Lake Campotosto artificial basin (Abruzzo Region, Central Italy), and it can represent a preparatory study for a quantitative multi-hazard analysis. A comprehensive multi-hazard scenario considers all the effects that can occur following the base ground shaking, providing a holistic approach to assessing the real hazard potential and helping to improve management of disaster mitigation. The study area might be affected by a complex earthquake-induced chain of geologic hazards, such as the seismic shaking, the surface faulting of the Gorzano Mt. Fault, which is very close to one of the three dams that form the Lake Campotosto, and by the earthquake-triggered landslides of different sizes and typologies. These hazards were individually and qualitatively analyzed, using data from an engineering-geological survey and a geomechanical classification of the rock mass. With regard to the seismic shaking, a quantitative evaluation of the seismic response of the Poggio Cancelli valley, in the northern part of Lake Campotosto, was performed, highlighting different seismic amplification phenomena due to morphologic and stratigraphic features. Some insights about the possible multi-hazard approaches are also discussed.

Author(s):  
Iunio Iervolino ◽  
Pasquale Cito ◽  
Chiara Felicetta ◽  
Giovanni Lanzano ◽  
Antonio Vitale

AbstractShakeMap is the tool to evaluate the ground motion effect of earthquakes in vast areas. It is useful to delimit the zones where the shaking is expected to have been most significant, for civil defense rapid response. From the earthquake engineering point of view, it can be used to infer the seismic actions on the built environment to calibrate vulnerability models or to define the reconstruction policies based on observed damage vs shaking. In the case of long-lasting seismic sequences, it can be useful to develop ShakeMap envelopes, that is, maps of the largest ground intensity among those from the ShakeMap of (selected) events of a seismic sequence, to delimit areas where the effects of the whole sequence have been of structural engineering relevance. This study introduces ShakeMap envelopes and discusses them for the central Italy 2016–2017 seismic sequence. The specific goals of the study are: (i) to compare the envelopes and the ShakeMap of the main events of the sequence to make the case for sequence-based maps; (ii) to quantify the exceedance of design seismic actions based on the envelopes; (iii) to make envelopes available for further studies and the reconstruction planning; (iv) to gather insights on the (repeated) exceedance of design seismic actions at some sites. Results, which include considerations of uncertainty in ShakeMap, show that the sequence caused exceedance of design hazard in thousands of square kilometers. The most relevant effects of the sequence are, as expected, due to the mainshock, yet seismic actions larger than those enforced by the code for structural design are found also around the epicenters of the smaller magnitude events. At some locations, the succession of ground-shaking that has excited structures, provides insights on structural damage accumulation that has likely taken place; something that is not accounted for explicitly in modern seismic design. The envelopes developed are available as supplemental material.


1981 ◽  
Vol 71 (1) ◽  
pp. 321-334
Author(s):  
Robin K. McGuire ◽  
Theodore P. Barnhard

abstract The accuracy of stationary mathematical models of seismicity for calculating probabilities of damaging shaking is examined using the history of earthquakes in China from 1350 A.D. to 1949 A.D. During this time, rates of seismic activity varied periodically by a factor of 10. Probabilities of damaging shaking are calculated in 62 cities in North China using 50 yr of earthquake data to estimate seismicity parameters; the probabilities are compared to statistics of damaging shaking in the same cities for 50 yr following the data window. These comparisons indicate that the seismic hazard analysis is accurate if: (1) the maximum possible earthquake size in each seismogenic zone is determined from the entire seismic history rather than from a short-time window; and (2) the future seismic activity can be estimated accurately. The first condition emphasizes the importance of realistically estimating the maximum possible size of earthquakes on faults. The second indicates the need to understand possible trends in seismic activity where these exist, or to develop an earthquake prediction capability with which to estimate future activity. Without the capability of estimating future seismicity, stationary models provide less accurate but generally conservative indications of seismic ground-shaking hazard. In the United States, the available earthquake history is brief but gives no indication of changing rates of activity. The rate of seismic strain release in the Central and Eastern United States has been constant over the last 180 yr, and the geological record of earthquakes on the southern San Andreas Fault indicates no temporal trend for large shocks over the last 15 centuries. Both observations imply that seismic activity is either stationary or of such a long period that it may be treated as stationary for seismic hazard analyses in the United States.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 398
Author(s):  
Federico Cella ◽  
Rosa Nappi ◽  
Valeria Paoletti ◽  
Giovanni Florio

Sediments infilling in intermontane basins in areas with high seismic activity can strongly affect ground-shaking phenomena at the surface. Estimates of thickness and density distribution within these basin infills are crucial for ground motion amplification analysis, especially where demographic growth in human settlements has implied increasing seismic risk. We employed a 3D gravity modeling technique (ITerative RESCaling—ITRESC) to investigate the Fucino Basin (Apennines, central Italy), a half-graben basin in which intense seismic activity has recently occurred. For the first time in this region, a 3D model of the Meso-Cenozoic carbonate basement morphology was retrieved through the inversion of gravity data. Taking advantage of the ITRESC technique, (1) we were able to (1) perform an integration of geophysical and geological data constraints and (2) determine a density contrast function through a data-driven process. Thus, we avoided assuming a priori information. Finally, we provided a model that honored the gravity anomalies field by integrating many different kinds of depth constraints. Our results confirmed evidence from previous studies concerning the overall shape of the basin; however, we also highlighted several local discrepancies, such as: (a) the position of several fault lines, (b) the position of the main depocenter, and (c) the isopach map. We also pointed out the existence of a new, unknown fault, and of new features concerning known faults. All of these elements provided useful contributions to the study of the tectono-sedimentary evolution of the basin, as well as key information for assessing the local site-response effects, in terms of seismic hazards.


2016 ◽  
Vol 59 ◽  
Author(s):  
L. Peruzza ◽  
R. Gee ◽  
B. Pace ◽  
G. Roberts ◽  
O. Scotti ◽  
...  

<p>We perform aftershock probabilistic seismic hazard analysis (APSHA) of the ongoing aftershock sequence following the Amatrice August 24th, 2016 Central Italy earthquake. APSHA is a time-dependent PSHA calculation where earthquake occurrence rates decrease after the occurrence of a mainshock following an Omori-type decay. In this paper we propose a fault source model based on preliminary evidence of the complex fault geometry associated with the mainshock. We then explore the possibility that the aftershock seismicity is distributed either uniformly or non-uniformly across the fault source. The hazard results are then computed for short-intermediate exposure periods (1-3 months, 1 year). They are compared to the background hazard and intended to be useful for post-earthquake safety evaluation.</p>


2019 ◽  
Vol 7 (3) ◽  
pp. 829-839 ◽  
Author(s):  
Claire Rault ◽  
Alexandra Robert ◽  
Odin Marc ◽  
Niels Hovius ◽  
Patrick Meunier

Abstract. The large, shallow earthquakes at Northridge, California (1994), Chi-Chi, Taiwan (1999), and Wenchuan, China (2008), each triggered thousands of landslides. We have determined the position of these landslides along hillslopes, normalizing for statistical bias. The landslide patterns have a co-seismic signature, with clustering at ridge crests and slope toes. A cross-check against rainfall-induced landslide inventories seems to confirm that crest clustering is specific to seismic triggering as observed in previous studies. In our three study areas, the seismic ground motion parameters and lithologic and topographic features used do not seem to exert a primary control on the observed patterns of landslide clustering. However, we show that at the scale of the epicentral area, crest and toe clustering occur in areas with specific geological features. Toe clustering of seismically induced landslides tends to occur along regional major faults. Crest clustering is concentrated at sites where the lithology along hillslopes is approximately uniform, or made of alternating soft and hard strata, and without strong overprint of geological structures. Although earthquake-induced landslides locate higher on hillslopes in a statistically significant way, geological features strongly modulate the landslide position along the hillslopes. As a result the observation of landslide clustering on topographic ridges cannot be used as a definite indicator of the topographic amplification of ground shaking.


Author(s):  
Takako Hashimoto ◽  
David Lawrence Shepard ◽  
Tetsuji Kuboyama ◽  
Kilho Shin ◽  
Ryota Kobayashi ◽  
...  

Abstract During a disaster, social media can be both a source of help and of danger: Social media has a potential to diffuse rumors, and officials involved in disaster mitigation must react quickly to the spread of rumor on social media. In this paper, we investigate how topic diversity (i.e., homogeneity of opinions in a topic) depends on the truthfulness of a topic (whether it is a rumor or a non-rumor) and how the topic diversity changes in time after a disaster. To do so, we develop a method for quantifying the topic diversity of the tweet data based on text content. The proposed method is based on clustering a tweet graph using Data polishing that automatically determines the number of subtopics. We perform a case study of tweets posted after the East Japan Great Earthquake on March 11, 2011. We find that rumor topics exhibit more homogeneity of opinions in a topic during diffusion than non-rumor topics. Furthermore, we evaluate the performance of our method and demonstrate its improvement on the runtime for data processing over existing methods.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nataliya Podgorodnichenko ◽  
Adeel Akmal ◽  
Fiona Edgar ◽  
Andrè M. Everett

PurposeThe purpose of this empirical study is to develop an understanding of how human resource (HR) managers employed by organizations with an explicit sustainability agenda view employees as stakeholders, and to explore how such views are operationalized in HR policies and practices.Design/methodology/approachAn interpretive approach using data from 35 semi-structured interviews was adopted for this study. Data were transcribed and analyzed using the Gioia methodology.FindingsComparison of approaches to sustainable human resource management (HRM) revealed three distinctive conceptualizations of employees with respect to the sustainability agenda – employees as a driving force for sustainability, employees as consumers of HR practices and employees as members of a community. Strong levels of integration between the HRM and sustainability agendas were only evidenced in those organizations where an attempt had been made to address all three roles simultaneously. Findings suggest that engagement with a sustainability agenda widens the remit of the HRM function, underscoring the importance of employees' roles as consumers of HR practices and as members of wider communities.Practical implicationsBy addressing the integration of HRM with a sustainability agenda, this article helps practitioners recognize diversity among employees' roles and the varying associated needs. Examples of policy and practice initiatives that effectively address these needs are provided.Originality/valueHRM has been widely criticized for overemphasizing shareholder value, thereby lacking in attention to the needs of other stakeholders, including employees. Findings from this study suggest the holistic approach advocated by a sustainability agenda can effectively quell these concerns.


2018 ◽  
Vol 34 (4) ◽  
pp. 1671-1691 ◽  
Author(s):  
Silvia Mazzoni ◽  
Giulio Castori ◽  
Carmine Galasso ◽  
Paolo Calvi ◽  
Richard Dreyer ◽  
...  

The 2016–2017 Central Italy earthquake sequence consisted of several moderately high-magnitude earthquakes, between M5.5 and M6.5, each centered in a different location and with its own sequences of aftershocks spanning several months. To study the effects of this earthquake sequence on the built environment and the impact on the communities, a collaborative reconnaissance effort was organized by the Earthquake Engineering Research Institute (EERI), the Eucentre Foundation, the European Centre for Training and Research in Earthquake Engineering (EUCentre), and the Rete dei Laboratori Universitari di Ingegneria Sismica (ReLuis). The effort consisted of two reconnaissance missions: one following the Amatrice Earthquake of 24 August 2016 and one after the end of the earthquake sequence, in May 2017. One objective of the reconnaissance effort was to evaluate existing strengthening methodologies and assess their effectiveness in mitigating the damaging effects of ground shaking. Parallel studies by the Geotechnical Extreme Events Reconnaissance (GEER) Association, presented in a companion paper, demonstrate that variations in-ground motions due to topographic site effects had a significant impact on damage distribution in the affected area. This paper presents that, in addition to these ground motion variations, variations in the vulnerability of residential and critical facilities were observed to have a significant impact on the level of damage in the region. The damage to the historical centers of Amatrice and Norcia will be used in this evaluation: the historical center of Amatrice was devastated by the sequence of earthquakes; the significant damage in Norcia was localized to individual buildings. Amatrice has not experienced the same number of devastating earthquakes as Norcia in the last 150 years. As a result, its building stock is much older than that of Norcia and there appeared to be little visual evidence of strengthening of the buildings. The distribution of damage observed throughout the region was found to be indicative of the effectiveness of strengthening and of the need for a comprehensive implementation of retrofit policies.


Sign in / Sign up

Export Citation Format

Share Document