scholarly journals Probabilistic Substrate Classification with Multispectral Acoustic Backscatter: A Comparison of Discriminative and Generative Models

Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 395 ◽  
Author(s):  
Daniel Buscombe ◽  
Paul Grams

We propose a probabilistic graphical model for discriminative substrate characterization, to support geological and biological habitat mapping in aquatic environments. The model, called a fully-connected conditional random field (CRF), is demonstrated using multispectral and monospectral acoustic backscatter from heterogeneous seafloors in Patricia Bay, British Columbia, and Bedford Basin, Nova Scotia. Unlike previously proposed discriminative algorithms, the CRF model considers both the relative backscatter magnitudes of different substrates and their relative proximities. The model therefore combines the statistical flexibility of a machine learning algorithm with an inherently spatial treatment of the substrate. The CRF model predicts substrates such that nearby locations with similar backscattering characteristics are likely to be in the same substrate class. The degree of allowable proximity and backscatter similarity are controlled by parameters that are learned from the data. CRF model results were evaluated against a popular generative model known as a Gaussian Mixture model (GMM) that doesn’t include spatial dependencies, only covariance between substrate backscattering response over different frequencies. Both models are used in conjunction with sparse bed observations/samples in a supervised classification. A detailed accuracy assessment, including a leave-one-out cross-validation analysis, was performed using both models. Using multispectral backscatter, the GMM model trained on 50% of the bed observations resulted in a 75% and 89% average accuracies in Patricia Bay and Bedford Basin, respectively. The same metrics for the CRF model were 78% and 95%. Further, the CRF model resulted in a 91% mean cross-validation accuracy across four substrate classes at Patricia Bay, and a 99.5% mean accuracy across three substrate classes at Bedford Basin, which suggest that the CRF model generalizes extremely well to new data. This analysis also showed that the CRF model was much less sensitive to the specific number and locations of bed observations than the generative model, owing to its ability to incorporate spatial autocorrelation in substrates. The CRF therefore may prove to be a powerful ‘spatially aware’ alternative to other discriminative classifiers.

Author(s):  
Daniel Buscombe ◽  
Paul Grams

We propose a probabilistic graphical model for discriminative substrate characterization, to support geological and biological habitat mapping in aquatic environments. The model, called a fully connected conditional random field (CRF), is demonstrated using multispectral and monospectral acoustic backscatter from heterogeneous seafloors in Patricia Bay, British Columbia, and Bedford Basin, Nova Scotia. Unlike previously proposed discriminative machine learning algorithms, the CRF model considers both the relative backscatter magnitudes of different substrates and their relative proximities. The model therefore combines the statistical flexibility of a machine learning algorithm with an inherently spatial treatment of the substrate. The CRF model predicts substrates such that nearby locations with similar backscattering characteristics are likely to be in the same substrate class. The degree of proximity and allowable backscatter similarity are controlled by parameters that are learned from the data. CRF model results were evaluated against a popular generative model known as a Gaussian Mixture model that doesn't include spatial dependencies, only covariance between substrate backscattering response over different frequencies. Both models are used in conjunction with sparse bed observations/samples in a supervised classification. A detailed accuracy assessment, including a leave-one-out cross-validation analysis, was performed using both models. Using multispectral backscatter, the GMM model trained on 50% of the bed observations resulted in a 75% and 89% average accuracies in Patricia Bay and Bedford Basin, respectively. The same metrics for the CRF model were 78% and 95%. Further, the CRF model resulted in a 91% mean cross-validation accuracy across four substrate classes at Patricia Bay, and a 99.5% mean accuracy across three substrate classes at Bedford Basin, which suggest that the CRF model generalizes extremely well to new data. This analysis also showed that the CRF model was much less sensitive to the specific number and locations of bed observations than the generative model, owing to its ability to incorporate spatial autocorrelation in substrates. The CRF approach therefore may prove to be a powerful `spatially aware' alternative to other discriminative classifiers.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Max Wilson ◽  
Thomas Vandal ◽  
Tad Hogg ◽  
Eleanor G. Rieffel

AbstractGenerative models have the capacity to model and generate new examples from a dataset and have an increasingly diverse set of applications driven by commercial and academic interest. In this work, we present an algorithm for learning a latent variable generative model via generative adversarial learning where the canonical uniform noise input is replaced by samples from a graphical model. This graphical model is learned by a Boltzmann machine which learns low-dimensional feature representation of data extracted by the discriminator. A quantum processor can be used to sample from the model to train the Boltzmann machine. This novel hybrid quantum-classical algorithm joins a growing family of algorithms that use a quantum processor sampling subroutine in deep learning, and provides a scalable framework to test the advantages of quantum-assisted learning. For the latent space model, fully connected, symmetric bipartite and Chimera graph topologies are compared on a reduced stochastically binarized MNIST dataset, for both classical and quantum sampling methods. The quantum-assisted associative adversarial network successfully learns a generative model of the MNIST dataset for all topologies. Evaluated using the Fréchet inception distance and inception score, the quantum and classical versions of the algorithm are found to have equivalent performance for learning an implicit generative model of the MNIST dataset. Classical sampling is used to demonstrate the algorithm on the LSUN bedrooms dataset, indicating scalability to larger and color datasets. Though the quantum processor used here is a quantum annealer, the algorithm is general enough such that any quantum processor, such as gate model quantum computers, may be substituted as a sampler.


2019 ◽  
Vol 9 (12) ◽  
pp. 2551
Author(s):  
Wenjun Bai ◽  
Changqin Quan ◽  
Zhi-Wei Luo

Learning latent representations of observed data that can favour both discriminative and generative tasks remains a challenging task in artificial-intelligence (AI) research. Previous attempts that ranged from the convex binding of discriminative and generative models to the semisupervised learning paradigm could hardly yield optimal performance on both generative and discriminative tasks. To this end, in this research, we harness the power of two neuroscience-inspired learning constraints, that is, dependence minimisation and regularisation constraints, to improve generative and discriminative modelling performance of a deep generative model. To demonstrate the usage of these learning constraints, we introduce a novel deep generative model: encapsulated variational autoencoders (EVAEs) to stack two different variational autoencoders together with their learning algorithm. Using the MNIST digits dataset as a demonstration, the generative modelling performance of EVAEs was improved with the imposed dependence-minimisation constraint, encouraging our derived deep generative model to produce various patterns of MNIST-like digits. Using CIFAR-10(4K) as an example, a semisupervised EVAE with an imposed regularisation learning constraint was able to achieve competitive discriminative performance on the classification benchmark, even in the face of state-of-the-art semisupervised learning approaches.


Author(s):  
Masoumeh Zareapoor ◽  
Jie Yang

Image-to-Image translation aims to learn an image from a source domain to a target domain. However, there are three main challenges, such as lack of paired datasets, multimodality, and diversity, that are associated with these problems and need to be dealt with. Convolutional neural networks (CNNs), despite of having great performance in many computer vision tasks, they fail to detect the hierarchy of spatial relationships between different parts of an object and thus do not form the ideal representative model we look for. This article presents a new variation of generative models that aims to remedy this problem. We use a trainable transformer, which explicitly allows the spatial manipulation of data within training. This differentiable module can be augmented into the convolutional layers in the generative model, and it allows to freely alter the generated distributions for image-to-image translation. To reap the benefits of proposed module into generative model, our architecture incorporates a new loss function to facilitate an effective end-to-end generative learning for image-to-image translation. The proposed model is evaluated through comprehensive experiments on image synthesizing and image-to-image translation, along with comparisons with several state-of-the-art algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 518
Author(s):  
Osamu Komori ◽  
Shinto Eguchi

Clustering is a major unsupervised learning algorithm and is widely applied in data mining and statistical data analyses. Typical examples include k-means, fuzzy c-means, and Gaussian mixture models, which are categorized into hard, soft, and model-based clusterings, respectively. We propose a new clustering, called Pareto clustering, based on the Kolmogorov–Nagumo average, which is defined by a survival function of the Pareto distribution. The proposed algorithm incorporates all the aforementioned clusterings plus maximum-entropy clustering. We introduce a probabilistic framework for the proposed method, in which the underlying distribution to give consistency is discussed. We build the minorize-maximization algorithm to estimate the parameters in Pareto clustering. We compare the performance with existing methods in simulation studies and in benchmark dataset analyses to demonstrate its highly practical utilities.


2019 ◽  
Vol 76 (7) ◽  
pp. 2349-2361
Author(s):  
Benjamin Misiuk ◽  
Trevor Bell ◽  
Alec Aitken ◽  
Craig J Brown ◽  
Evan N Edinger

Abstract Species distribution models are commonly used in the marine environment as management tools. The high cost of collecting marine data for modelling makes them finite, especially in remote locations. Underwater image datasets from multiple surveys were leveraged to model the presence–absence and abundance of Arctic soft-shell clam (Mya spp.) to support the management of a local small-scale fishery in Qikiqtarjuaq, Nunavut, Canada. These models were combined to predict Mya abundance, conditional on presence throughout the study area. Results suggested that water depth was the primary environmental factor limiting Mya habitat suitability, yet seabed topography and substrate characteristics influence their abundance within suitable habitat. Ten-fold cross-validation and spatial leave-one-out cross-validation (LOO CV) were used to assess the accuracy of combined predictions and to test whether this was inflated by the spatial autocorrelation of transect sample data. Results demonstrated that four different measures of predictive accuracy were substantially inflated due to spatial autocorrelation, and the spatial LOO CV results were therefore adopted as the best estimates of performance.


2021 ◽  
Author(s):  
Yahia Zakaria ◽  
Mayada Hadhoud ◽  
Magda Fayek

Deep learning for procedural level generation has been explored in many recent works, however, experimental comparisons with previous works are rare and usually limited to the work they extend upon. This paper's goal is to conduct an experimental study on four recent deep learning procedural level generators for Sokoban to explore their strengths and weaknesses. The methods will be bootstrapping conditional generative models, controllable & uncontrollable procedural content generation via reinforcement learning (PCGRL) and generative playing networks. We will propose some modifications to either adapt the methods to the task or improve their efficiency and performance. For the bootstrapping method, we propose using diversity sampling to improve the solution diversity, auxiliary targets to enhance the models' quality and Gaussian mixture models to improve the sample quality. The results show that diversity sampling at least doubles the unique plan count in the generated levels. On average, auxiliary targets increases the quality by 24% and sampling conditions from Gaussian mixture models increases the sample quality by 13%. Overall, PCGRL shows superior quality and diversity while generative adversarial networks exhibit the least control confusion when trained with diversity sampling and auxiliary targets.


2019 ◽  
Vol 2019 (4) ◽  
pp. 232-249 ◽  
Author(s):  
Benjamin Hilprecht ◽  
Martin Härterich ◽  
Daniel Bernau

Abstract We present two information leakage attacks that outperform previous work on membership inference against generative models. The first attack allows membership inference without assumptions on the type of the generative model. Contrary to previous evaluation metrics for generative models, like Kernel Density Estimation, it only considers samples of the model which are close to training data records. The second attack specifically targets Variational Autoencoders, achieving high membership inference accuracy. Furthermore, previous work mostly considers membership inference adversaries who perform single record membership inference. We argue for considering regulatory actors who perform set membership inference to identify the use of specific datasets for training. The attacks are evaluated on two generative model architectures, Generative Adversarial Networks (GANs) and Variational Autoen-coders (VAEs), trained on standard image datasets. Our results show that the two attacks yield success rates superior to previous work on most data sets while at the same time having only very mild assumptions. We envision the two attacks in combination with the membership inference attack type formalization as especially useful. For example, to enforce data privacy standards and automatically assessing model quality in machine learning as a service setups. In practice, our work motivates the use of GANs since they prove less vulnerable against information leakage attacks while producing detailed samples.


2020 ◽  
Vol 34 (10) ◽  
pp. 13869-13870
Author(s):  
Yijing Liu ◽  
Shuyu Lin ◽  
Ronald Clark

Variational autoencoders (VAEs) have been a successful approach to learning meaningful representations of data in an unsupervised manner. However, suboptimal representations are often learned because the approximate inference model fails to match the true posterior of the generative model, i.e. an inconsistency exists between the learnt inference and generative models. In this paper, we introduce a novel consistency loss that directly requires the encoding of the reconstructed data point to match the encoding of the original data, leading to better representations. Through experiments on MNIST and Fashion MNIST, we demonstrate the existence of the inconsistency in VAE learning and that our method can effectively reduce such inconsistency.


2017 ◽  
Author(s):  
Eric Schulz ◽  
Charley M. Wu ◽  
Quentin J. M. Huys ◽  
Andreas Krause ◽  
Maarten Speekenbrink

AbstractHow do people pursue rewards in risky environments, where some outcomes should be avoided at all costs? We investigate how participant search for spatially correlated rewards in scenarios where one must avoid sampling rewards below a given threshold. This requires not only the balancing of exploration and exploitation, but also reasoning about how to avoid potentially risky areas of the search space. Within risky versions of the spatially correlated multi-armed bandit task, we show that participants’ behavior is aligned well with a Gaussian process function learning algorithm, which chooses points based on a safe optimization routine. Moreover, using leave-one-block-out cross-validation, we find that participants adapt their sampling behavior to the riskiness of the task, although the underlying function learning mechanism remains relatively unchanged. These results show that participants can adapt their search behavior to the adversity of the environment and enrich our understanding of adaptive behavior in the face of risk and uncertainty.


Sign in / Sign up

Export Citation Format

Share Document