scholarly journals Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff

Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 499 ◽  
Author(s):  
Elena Sizova ◽  
Christoph Hauzenberger ◽  
Harald Fritz ◽  
Shah Wali Faryad ◽  
Taras Gerya

Some (ultra)high-pressure metamorphic rocks that formed during continental collision preserve relict minerals, indicating a two-stage evolution: first, subduction to mantle depths and exhumation to the lower-crustal level (with simultaneous cooling), followed by intensive heating that can be characterized by a β-shaped pressure–temperature–time (P–T–t) path. Based on a two-dimensional (2D) coupled petrological–thermomechanical tectono-magmatic numerical model, we propose a possible sequence of tectonic stages that could lead to these overprinting metamorphic events along an orogenic β-shaped P–T–t path: the subduction and exhumation of continental crust, followed by slab retreat that leads to extension and subsequent asthenospheric upwelling. During the last stage, the exhumed crustal material at the crust–mantle boundary undergoes heating from the underlying hot asthenospheric mantle. This slab rollback scenario is further compared numerically with the classical continental collision scenario associated with slab breakoff, which is often used to explain the late heating impulse in the collisional orogens. The mantle upwelling occurring in the experiments with slab breakoff, which is responsible for the heating of the exhumed crustal material, is not related to the slab breakoff but can be caused either by slab bending before slab breakoff or by post-breakoff exhumation of the subducted crust. Our numerical modeling predictions align well with a variety of orogenic P–T–t paths that have been reported from many Phanerozoic collisional orogens, such as the Variscan Bohemian Massif, the Triassic Dabie Shan, the Cenozoic Northwest Himalaya, and some metamorphic complexes in the Alps.

2020 ◽  
Author(s):  
Elena Sizova ◽  
Christoph Hauzenberger ◽  
Harald Fritz ◽  
Shah Wali Faryad ◽  
Taras Gerya

<p>High- to ultrahigh pressure rocks ((U)HP) from some collisional orogens bear evidences of post collisional heating recorded by a β-shaped pressure–temperature–time (P–T–t) path. The post peak pressure heating segment of the P–T–t path, which can be well developed such as in the Bohemian Massif of the Variscan orogenic belt, occurs after the (U)HP rocks are exhumated from mantle depths to various crustal levels. This process is often explained by geologists as a result of mantle delamination or slab breakoff. Based on a two-dimensional coupled petrological–thermomechanical tectono-magmatic numerical model, we demonstrate that slab rollback during ongoing continental subduction can be considered as a possible mechanism responsible for the effective extraction of (ultra)high pressure metamorphic rocks and their later heating. This slab rollback scenario is further compared numerically with the classical continental collision scenario associated with slab breakoff. The mantle upwelling occurring in the experiments with slab breakoff, which is responsible for the heating of the exhumed crustal material, is not directly related to the slab breakoff but can be caused either by slab bending before slab breakoff or by post-breakoff exhumation of the subducted crust.</p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Petra Maierová ◽  
Karel Schulmann ◽  
Pavla Štípská ◽  
Taras Gerya ◽  
Ondrej Lexa

AbstractThe classical concept of collisional orogens suggests that mountain belts form as a crustal wedge between the downgoing and overriding plates. However, this orogenic style is not compatible with the presence of (ultra-)high pressure crustal and mantle rocks far from the plate interface in the Bohemian Massif of Central Europe. Here we use a comparison between geological observations and thermo-mechanical numerical models to explain their formation. We suggest that continental crust was first deeply subducted, then flowed laterally underneath the lithosphere and eventually rose in the form of large partially molten trans-lithospheric diapirs. We further show that trans-lithospheric diapirism produces a specific rock association of (ultra-)high pressure crustal and mantle rocks and ultra-potassic magmas that alternates with the less metamorphosed rocks of the upper plate. Similar rock associations have been described in other convergent zones, both modern and ancient. We speculate that trans-lithospheric diapirism could be a common process.


2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Lucie Tajčmanová ◽  
Paola Manzotti ◽  
Matteo Alvaro

The mechanisms attending the burial of crustal material and its exhumation before and during the Alpine orogeny are controversial. New mechanical models propose local pressure perturbations deviating from lithostatic pressure as a possible mechanism for creating (ultra-)high-pressure rocks in the Alps. These models challenge the assumption that metamorphic pressure can be used as a measure of depth, in this case implying deep subduction of metamorphic rocks beneath the Alpine orogen. We summarize petro-logical, geochronological and structural data to assess two fundamentally distinct mechanisms of forming (ultra-)high-pressure rocks: deep subduction; or anomalous, non-lithostatic pressure variation. Furthermore, we explore mineral-inclusion barometry to assess the relationship between pressure and depth in metamorphic rocks.


Geology ◽  
2019 ◽  
Vol 47 (11) ◽  
pp. 1079-1082 ◽  
Author(s):  
M.R. Palmer ◽  
E.Y. Ersoy ◽  
C. Akal ◽  
İ. Uysal ◽  
Ş.C. Genç ◽  
...  

Abstract Potassic volcanic rocks are characteristic of collisional tectonic zones, with recycling of continental crust playing an important role in their generation. Potassium-rich partial melts and/or fluids derived from subducted continental material initiate and/or mix with mantle-derived melts and then erupt at the surface with varying degrees of interaction with the overlying lithosphere. The details of how continental material incorporates into mantle melts are, however, uncertain. In particular, the depths from which the potassium-rich fluids and/or melts are released from the continental material and then react with the mantle-derived melts remain a subject of debate. We have measured the boron isotope composition of volcanic rocks from Western Anatolia (Turkey) that erupted between 52 and 0.1 Ma, and span the lifetime of collisional events from initial arc-type eruptions to post-collisional volcanism. These data and other geochemical indices show that ultrapotassic volcanism was mainly confined to a narrow window between ca. 20 and 15 Ma, consistent with recycling of high-pressure phengite, with the timing of the potassic volcanism coincident with slab rollback and breakoff.


2011 ◽  
Vol 48 (2) ◽  
pp. 441-472 ◽  
Author(s):  
Thomas E. Krogh ◽  
Sandra L. Kamo ◽  
Peter Robinson ◽  
Michael P. Terry ◽  
Kim Kwok

Reconstructing tectonic histories involving continental collision, subduction, and exhumation at plate-tectonic rates of ∼1 cm/year, requires precise U–Pb zircon geochronology. The Western Gneiss Region has exceptional exposures of high-pressure (HP) and ultra-high-pressure (UHP) rocks. The strategy adopted here involved sampling eclogite and associated late unstrained pegmatites to acquire the time of eclogite crystallization and subsequent exhumation, respectively. The oldest eclogite sampled is 415 ± 1 Ma from layered, probably UHP eclogite at Tevik, Averøya, also with a garnet–hornblende assemblage at 410 ± 1 Ma. The Flem Gabbro eclogite margin, with implied UHP conditions, is 410 ± 2 Ma. Hornblende eclogite at Seth, Lepsøya, never at UHP, is 412 ± 2 Ma. These compare to Devonian ages of 401 ± 1 Ma for overgrowths on Proterozoic baddeleyite in Selnes Gabbro, 402 ± 2 Ma for coesite eclogite at Hareidlandet, 405–400 Ma for coesite eclogite at Flatraket, and 405 ± 2 Ma for near-UHP eclogite at Hjelmelandsdalen. The 415 Ma eclogite at Tevik compares to granitic pegmatite in the same outcrop at 395.2 ± 1.3 Ma and to pegmatite in eclogite at Aspøya at 395.3 ± 2 Ma. The 410 Ma age at Flem compares to nearby pegmatite in eclogite at 396 ± 4 Ma. Collectively, these results imply 14–20 million years between deep eclogite crystallization at ∼130 km and return to amphibolite-facies conditions at ∼30 km, with crystallization of locally derived granitoid melts. Nearby garnet-pyroxenite records older ages (∼430) and greater depths (∼200 km), but on similar exhumation paths at ∼0.4–0.7 cm/year.


Sign in / Sign up

Export Citation Format

Share Document